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Abstract
Generalization is at the core of human intelligence. When the relationship be-

tween continuous-valued data is generalized, generalization amounts to function

learning. Function learning is important for understanding human cognition, as

many everyday tasks and problems involve learning how quantities relate and

subsequently using this knowledge to predict novel relationships. While func-

tion learning has been studied in psychology since the early 1960s, this thesis

argues that questions regarding representational characteristics have not been

adequately addressed in previous research.

Previous accounts of function learning have often proposed one-size-fits-all

models that excel at capturing how participants learn and extrapolate. In these

models, learning amounts to learning the details of the presented patterns. In-

stead, this thesis presents computational and empirical results arguing that par-

ticipants often learn abstract features of the data, such as the type of function or

the variability of features of the function, instead of the details of the function.

While previous work has emphasized domain-general inductive biases and

learning rates, I propose that these biases are more flexible and adaptive than

previously suggested. Given contextual information that sequential tasks share

the same structure, participants can transfer knowledge from previous training

to inform their generalizations.

Furthermore, this thesis argues that function representations can be composed

to form more complex hypotheses, and humans are perceptive to, and sometimes

generalize according to these compositional features. Previous accounts of func-

tion learning had to postulate a fixed set of candidate functions that form a partic-

ipants’ hypothesis space, which ultimately struggled to account for the variety of

extrapolations people can produce. In contrast, this thesis’s results suggest that

a small set of broadly applicable functions, in combination with compositional

principles, can produce flexible and productive generalization.
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Chapter 1

Aims of the Thesis

Recent years have seen a dramatic improvement in artificial intelligence most

prominently driven by deep neural networks. Fueled by increased computational

power, these models have come close to—or even surpassed—human performance

for a range of domains, such as object recognition or speech recognition. Con-

ceptually more important advances were achieved in complex dynamic planning

and control tasks; artificial learning models have recently shown remarkable per-

formance in complex game playing, beating the best human players in the game

of Go (Silver et al., 2016) and poker (Brown and Sandholm, 2018), or achieving

human-level performance in Atari games by training only on pixel data (Mnih

et al., 2015). Notwithstanding, there remain human cognitive capabilities that

are beyond the reach of current, state-of-the-art artificial intelligence. These ca-

pabilities include forming long-term plans, inferring deep causal relationships, or

generalizing previous knowledge to new domains. More strikingly, humans ex-

hibit these capabilities in severely underconstrained and sparse domains, while

most algorithms require large amounts of data.

This sparsity is evident in early development when children first have to ac-

quire basic cognitive and social skills. While early learning is slow (Mervis et al.,

1992), at around two years of age, suddenly, learning is characterized by more

1



2 Chapter 1. Aims of the Thesis

rapid improvements. One prominent example is the shape bias, where children

after the age of two can generalize whole category structures from single cate-

gory members (Samuelson and Smith, 2005), in so-called one-shot learning. This

ability to generalize at an early developmental stage is remarkably similar to the

generalization ability of adults. Like two-year-olds, adults confidently infer char-

acteristics or constituents and generalize from, a concept or a physical scene that

was presented only once (Vul et al., 2014).

The change of learning, from slow and error-prone to rapid leaps, and the

ability to generalize given sparse data, suggests that crucial changes occur dur-

ing early development. In contrast to human learning, state-of-the-art artificial

learners exhibit constant but highly data-reliant learning, and the capability of

the model to generalize from the learned data and task is limited (Lake et al.,

2017). These differences suggest that human and artificial learners differ in the

representation of learned data, their inferential capabilities underlying generaliza-

tion, or both. Human-like generalization and learning adopts mechanisms such

as learning to learn (Harlow, 1949), and operates upon causal (Ullman et al.,

2014), generative (Feldman, 1997; Jern and Kemp, 2013), as well as hierarchical

and compositional representations (Lake et al., 2015).

In this thesis, I explore how abstract compositional representations can fa-

cilitate generalization and suggest ways in which these models can be acquired

through development and learning. To provide a tractable field of empirical exam-

ination, I focus on cases where a relationship between two continuous quantities

must be learned. This type of learning, which amounts to regression from a sta-

tistical or machine learning perspective, is called function learning or function

estimation in the psychological literature. While this domain might seem limited

and artificial, function learning is a fundamental constituent of human learning,

inference, and planning. It is crucial for domains as diverse as motor-learning

(hit that three-pointer), scientific reasoning (calculating the orbits of celestial
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bodies), or prediction (investing in the stock market, inferring the spread of a

disease). As such, human function learning constitutes a domain of study that

represents a wide range of human capabilities and is concrete enough for detailed

computational analysis.

Function learning has been studied in psychology at least since Carroll (1963).

While research in function learning has resulted in the description and modeling

of particular human inductive biases and function-dependent learning difficulty, I

suggest that many representational characteristics underpinning function learning

and extrapolation are under-constrained.

In Chapter 2, I first discuss function learning in the broader space of hu-

man generalization. Then, in Chapter 3, I show that while previous research has

emphasized learning differences for traditional and more modern experimental

paradigms, underlying inductive biases and extrapolations are very similar when

accounting for task-mediated memory demands. Through empirical and compu-

tational work, I show that in both paradigms hypothesis spaces over functions

can be learned as an abstract, high-level encoding of the learned relations.

In Chapter 4, I explore the structure of these spaces in more detail. By

adopting a novel experimental paradigm, I show that variability in training forms

graded, and often multimodal hypothesis spaces.

Finally, in Chapters 5, 6 and 7, I evaluate how these hypotheses can be used. I

suggest that abstract hypotheses over functions provide reusable models that can

be transferred to perform extrapolation, even if data is sparse. Then, I present

evidence that these hypotheses can be composed into more complex generative

models, and that humans are perceptive to and generalize accordingly.





Chapter 2

Introduction

At the core of intelligence is the ability to learn and adapt. Every day, we face

novel situations, entities, or objects, and every day, we need to solve problems to

achieve our goals and, ultimately, survive. In all but the most artificial situations,

learning amounts to generalization: memorization can only be adaptive if the

exact same situation reoccurs. Generalization is the process of applying prior

knowledge of similar events, objects, or relationships to novel situations.

This thesis discusses generalization in function learning tasks, where partic-

ipants have to learn the relationship between two continuous-valued variables.

Specifically, I discuss how people choose between different hypothesized func-

tions and how they reuse and combine previously learned knowledge to form

extrapolations. Since these questions parallel work in other research areas, such

as categorization or rule-learning, and the results of this work are relevant for

broader questions about knowledge representation and generalization, I will start

by summarizing previous results in generalization research.

First, I will discuss how implicit, similarity-based, and explicit, rule-based

hypotheses can account for human generalizations before discussing the structure

and representation of the hypotheses themselves. Then, I will motivate function

learning as an essential field of study for developing an understanding of hu-

5



6 Chapter 2. Introduction

man generalization and summarize the main results of function learning research.

Finally, I discuss open questions that motivate the work in this thesis: abstract

knowledge in human function extrapolations and the structure and representation

of the hypothesis space underlying function learning.

2.1 The Basis for Generalization

On which basis are experiences judged as similar, and what types of knowledge can

be generalized? Traditionally, two opposing answers have been put forward: gen-

eralization is performed based on a perceived similarity between the task at hand

and previous knowledge, or generalization is the application of a learned rule. In

the next paragraphs, I will first summarize the main ideas behind similarity-based

approaches to generalization. Then, I will briefly present research on rule-based

and structure-based generalization.

Pioneering work by Shepard (1987) provided strong evidence for psychological

distance as the basis for category generalization. Imagine a child learning that

the fluffy, sleepy creature in the house is a cat. When the child subsequently

encounters other fluffy creatures, she will generalize their categories based on the

similarity to the previously met cat. Formally, the child has to learn a func-

tion that implicitly maps from perceptual features to categories; for example,

see Figure 2.1. Shepard’s law postulates that both the cat and new animals are

represented in a psychological metric space. In this space, both known and new

animals are represented as points, and their similarity is a function of the dis-

tance between these points. Shepard argued that this approximately-exponential

function was universal and showed that it applied to a broad range of generaliza-

tion domains, and sensory modalities, both for humans and a wide range of other

animals.

Generalization, as a function of psychological distance, is a core constituent
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Figure 2.1: Figure reproduced from French et al. (2004). Natural categories can

vary widely in their category members and for some, membership might not be clear.

For example, experiments by French et al. (2004) showed that 3-4 month-old infants

produced asymmetric classification errors for cat and dog categories: they included

dogs within cat categories, but did not misclassify cats as dogs.
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of many categorization models. Most prominently, exemplar models of catego-

rization assume an underlying representation space and distances as the basis

for generalization gradients (Erickson and Kruschke, 1998). Subsequent research

has expanded Shepard’s rule of generalization, applying it to arbitrary repre-

sentations, allowing generalizations from multiple instances, and characterizing

its mathematical foundations more formally (Ashby and Alfonso-Reese, 1995;

Tenenbaum and Griffiths, 2001; Jäkel et al., 2008).

Instead of implicitly inducing a category from its representation in psycho-

logical space, early research in cognitive science focused on situations in which

highly structured, logical combinations of features determined category member-

ship (Bruner et al., 1956). Repeatedly seeing cats being fluffy and sleepy would

allow the child to learn the rule fluffy + sleepy = cat. While this approach is

unsatisfactory for the vast majority of categories — try listing necessary and suf-

ficient conditions for any non-artificial category — people can learn and apply

these rules. They often shift between similarity-based and rule-based inference

depending on the task, and people generally exhibit individual differences (von

Helversen and Rieskamp, 2009; Pachur and Olsson, 2012; Little and McDaniel,

2015). For an example of a category for which laypeople might have implicit

knowledge, but with experience might learn rule-like patterns, see Figure 2.2.

From a probabilistic perspective, learning about categories, either in terms

of psychological distances or distributions over category-specific rules, amounts

to updating prior beliefs over possible categories or rules. For example, seeing

a hairless Sphynx cat will result in an updated belief in which fluffiness is less

pronounced as a feature, or in which the distance between cats and dogs are

less disparate. Features of the training, such as the number and diversity of the

examples, or the overlap between categories, inform the resulting generalizations

(Hahn et al., 2005; French et al., 2004; Osherson et al., 1990; Hayes et al., 2019).

In Chapter 4, I will present a first experiment uncovering whether people can
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Figure 2.2: Given the left cloud pattern, which of the three patterns of the right belong

to the same classification? One pattern is commonly associated with approaching

storms, the other three with stormy weather. The left pattern and the first and

last of the three candidate patterns are nimbostratus clouds that usually produce

continuous rain or snow. The second candidate pattern depicts altostratus clouds,

which often precede approaching storms. For many categories, laypeople may lack

explicit knowledge about defining features of the category. However, even without

this knowledge people can perceive similarities and generalize flexibly.

perceive and represent the diversity of training in a function learning setup.

Following Tenenbaum and Griffiths (2001), we can express these prior beliefs

as a hypothesis space, H, either over the geometry of categories in psychological

space (for Shepard consequential regions) or, for rule-based category learning,

as hypotheses over rules and their constituents (Goodman et al., 2008). For

example, the hypothesis space for cats might express that both fluffiness and

sleepiness are likely features of cats. It would also express an inductive preference

for conjunctive feature combinations, especially for fluffy and sleepy.

Discussing the structure of the hypothesis space is useful when considering

the basis of generalization: how does one select a generalization from the infinite

space of alternatives? For example, categories for any collection of encountered

examples can be made arbitrarily specific. Consider for instance the set of num-

bers {8,10,12,14}: even numbers from 8 to 14 and the numbers 8,10,12,14 are

both equally accurate hypotheses. Due to the finite nature of the example and the

domain of numbers, the set of alternatives that one would consider is fairly small.
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However, for any set of natural categories, the number of potentially relevant fea-

tures is infinite1. The Bayesian approach to inference provides an elegant answer

to this issue. If several hypotheses are equally likely a priori and are consistent

with the evidence, the more specific hypothesis will be favored. Since more flex-

ible hypotheses cover a greater variety of observations, not observing these data

provides negative evidence. Thus, in a Bayesian framework, complexity does not

have to be explicitly penalized but can be accounted for implicitly by assuming

human inductive priors (Tenenbaum, 1999). Furthermore, if the prior over hy-

potheses is not flat, but some inductions are favored, these biases can constrain

the space of alternatives to consider. This allows for stronger generalizations, as

more mass is concentrated on the a-priori favored hypotheses. These inductive

biases have been studied widely in cognitive science and have been proposed as

the source for children’s rapid learning and far-ranging generalizations of word

meaning, causal inference, or category induction (for an overview, see Griffiths

et al., 2010). In Chapters 5 and 7, I will present the results of experiments dis-

cussing how people balance the complexity of the hypothesis against instruction

and prior biases when extrapolating learned continuous patterns.

2.2 Representation and the Target of Generaliza-

tion

We can distinguish different forms of generalization by closely examining the tar-

get of generalization. If the target is a discrete category label, the generalization

amounts to applying a previously learned mapping to a novel situation and as-

signing that instance the most consistent category label. We can abstractly state

that inference as p(y = c|H,x), that is, the probability of the new observation y

1Even in the number game, one can always construct ad-hoc hypotheses, such as the number
of chicken fingers one can order at the local chicken shop, or the lucky numbers I drew in a
fortune cookie.



2.2. Representation and the Target of Generalization 11

belonging to category c given previous knowledge x and a hypothesis space H

(for example, see Sanborn et al., 2006). However, if the target y is a continuous

quantity, for example, y ∈ R, the task amounts to function learning.

Another type of inference closely related to generalization is analogical trans-

fer. Research in analogy or transfer tends to examine problem-solving, where

information about one domain has to be generalized to a new domain. While

this task is very similar to generalization, research in analogical reasoning and

transfer usually uses less obvious, often structural similarities, and the domains

or tasks between which one has to generalize are often more disparate (Gick and

Holyoak, 1980). Structural analogies, similar to rule-learning, require the prob-

lem solver to detect a shared underlying structure between two or more instances;

for example, deducing “An electric battery is like a reservoir”(Gentner, 1983).

Similar ideas have been discussed from a probabilistic point of view, expand-

ing the notion of what is represented in the hypothesis space, and how learning

operates. First, many of the problems we encounter elicit particular represen-

tations, and these representations might be crucial for the flexible ways we can

generalize. For example, the representation of colors is widely assumed to be

ring-like. In contrast, biological kinds are often represented in hierarchical, often

tree-like structures, whereas social and political relationships often form graphs,

with edges between nodes signifying interrelations between the actors. Other re-

lationships are directed; for instance, causal relationships are often represented

as directed graphs, where edges are causal relations. Even for seemingly simple

categorization tasks, the representation is crucial; for example, see Figure 2.3. A

theory of learning and generalization thus has to explain how these structures can

be inferred and applied. Computational models of probabilistic structure learn-

ing have shown that structures, such as trees, rings, and graphs, can be inferred

from data (Kemp and Tenenbaum, 2008; Lake et al., 2018).

This form of learning can be seen as learning about the hypothesis space
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Figure 2.3: Materials from the Omniglot dataset (Lake et al., 2019). Lake et al.

(2015) showed that people infer rich, generative models of characters given only few

examples and generalize these patterns to new, unseen instances. Given the characters

in the left box, which other characters belong to the same alphabet? Which characters

belong to a fictitious alphabet? Can you locate the alphabets geographically? Would

you be able to produce new characters of the alphabet given these examples? A

model proposed by Lake et al. (2015) accounted for these rich behavioral patterns

by inducing generative programs over stroke sequences, as opposed to the commonly

adopted pixel-based representations.

itself: what is the structure of the domain, and how do features or entities com-

bine? Knowledge about the structure of the hypothesis space is often referred to

as overhypotheses, or hypotheses over hypotheses themselves (Goodman, 1983;

Kemp et al., 2007). These abstract learning processes have been pointed out

as instrumental for learning early in development (Xu et al., 2009; Kemp et al.,

2007), and can sometimes precede more concrete learning, the so-called blessing

of abstraction (Gershman, 2017a). Motivated by these results, I will examine

overhypotheses in Chapters 6 and 7.
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2.3 Generalization and Transfer in Function Learn-

ing

These are strange times to motivate function learning. With the coronavirus

pandemic raging at the time of writing, time-series data and model predictions

are discussed daily in the news. Figure 2.4 displays one such time-series: daily

death-rates for the United States up to the 4th of May 2020. Function learning

tasks amount to learning a mapping between two (or more) metric quantities, the

predictor(s) and the outcome(s). In this case, the predictors are days from early

March until the 4th of May, and the outcome is the daily death rate. Two types

of generalizations are commonly discussed in function learning: interpolation and

extrapolation. Interpolation amounts to predicting outcome values for predictor

values within the range of known values, in this case, predicting death rates for a

day up to the 4th of May. On the other hand, extrapolation amounts to predicting

values outside the range of known values, in this case, values from the 5th of May

onward. It requires no further motivation to see the immense importance of these

predictions for policy, science, and everyday decision making.

Given the importance of accurate extrapolations, how can we predict, and

given predictions, how can we judge their quality? Computationally, extrapola-

tion consists in determining new values yn+1 for test values xn+1, conditional on

previously learned xn,yn and a prior belief F over possible functions. The type

of prediction then crucially depends on the prior belief over functions.

Once predictions are derived, their quality can be evaluated by measuring how

closely interpolations match the seen data, and, once new data arrive, how well

predictions match the new information. In Figure 2.5, we can see two predictions

for the coronavirus data. The predictions in Figure 2.5a were created by a senior

advisor to the White House and are (likely) predictions of a 3rd-order polynomial,

y = ∑3
i=0 βix

i (Washington Post, 2020). The model predicts an extreme decline of
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Figure 2.4: Daily coronavirus death rates in the United States (accessed from the

New York Times on 9th of June 2020).

daily deaths (in fact, it predicts negative deaths past 15th of May). In Figure 2.5b,

we can see the predictions of a different model, a Gaussian process (for a short

introduction to Gaussian processes, see Appendix A). This model also predicts a

decline in deaths, but at a more gradual rate. Furthermore, both models express

different views of the underlying data-generating process — the Gaussian process

explicitly assumes that the data exhibits smooth changes with additional periodic

fluctuations. In contrast, the cubic model has no such assumption. In Figure 2.5c,

we can see that the extreme drop in cases predicted by the cubic model has not

occurred. Instead, the number of deaths has slowly decayed with some additional

fluctuation2.

2This is not to say that the Gaussian process captures the complex underlying causal pro-
cess. Both the cubic model and the Gaussian process do not account for populations, their
demographics, or contagion factors. Both models thus are of little use for evaluating policy
interventions. However, the Gaussian process allows us to express prior assumptions, and de-
rive posterior estimates for abstract features of the function, such as the extent of short-term
changes, or the long-range decay of case-numbers.
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(a) Predictions of a cubic function.
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(b) Predictions of a Gaussian process.
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(c) Actual daily deaths (reported at the time of writing) and the median predictions, and

90% uncertainty intervals of the Gaussian process.

Figure 2.5: The predictions of a cubic function and a Gaussian process, as well as the

actual daily deaths.
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We have seen how function extrapolation crucially depends on the assump-

tions one makes about the data-generating process, and how different functions

can produce widely different predictions. While the development of better pre-

dictive models is of fundamental importance for science and policy, the interest

of this thesis is in how laypeople perceive and learn relationships in data, and

how they generalize these relationships to new data.

Human function learning research has a much shorter and sparser history than

categorization research. Research into human function learning started with work

by Carroll (1963), that showed that participants could learn functions from data

and extrapolate to new values, see Figure 2.6. This work also established that

functions were easier to learn than random patterns, and linear functions were

easier to learn than non-linear functions. Subsequent studies have confirmed these

Figure 2.6: Experimental setup adopted in the first study of function learning. In Car-

roll (1963), participants received test-books and had to learn the relationship between

stimuli (V mark on the mid-left) and response distances. Afterward, participants had

to predict the response magnitude for a series of old and new stimulus magnitudes.
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early results. People learn linear relationships more quickly (Brehmer et al., 1985;

Byun, 1995) and have difficulty making non-linear and especially non-monotonic

extrapolations (Brehmer, 1974; Brehmer et al., 1985; Byun, 1995; Kalish, 2013).

These strong inductive biases for linearity have also been found in control exper-

iments. Berry and Broadbent (1984) found that participants tasked to control a

complex dynamical system struggled when the underlying dynamics were expo-

nential, rather than linear.

When extrapolating, people show a strong bias toward inferring linear func-

tions, particularly linear functions with matching x and y values. As an illustra-

tion, consider the aggregate results obtained from DeLosh et al. (1997) in Figure

2.7. While mean interpolations for linear, exponential, and quadratic functions

match the training range (center of the plots), extrapolations deviate in infor-

mative ways. For linear functions, the extrapolations underestimate the slope,

whereas exponential and quadratic extrapolations suggest linear patterns.

Figure 2.7: Figure reproduced from DeLosh et al. (1997). Mean interpolation and ex-

trapolation results in DeLosh et al. (1997) suggest that participants often extrapolated

linearly, even if the training data and their interpolation judgements were non-linear.

These results have been widely reproduced (Brehmer, 1971, 1976; DeLosh
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et al., 1997; Kalish et al., 2004; Brown and Lacroix, 2017; Kwantes and Neal,

2006). Moreover, the strong preference for linear functions has also been found

in iterated learning experiments. In iterated function learning experiments, par-

ticipants obtain extrapolations of previous participants as training. Kalish et al.

(2007) showed that these iterations quickly converge to linear patterns, even if

the initial training was negative, U-shaped, or random (see Figure 2.8).

Figure 2.8: Figure reproduced from Kalish et al. (2007). In iterated learning ex-

periments, participants receive extrapolations performed by previous participants as

training data. Experiments by Kalish et al. (2007) showed that participants quickly

transition to positive linear functions, even if the original training was not linear, or

even random.

These results have led to the development of models that attach a special

representational status to linear relationships (Kalish et al., 2004), or assume

that people have a strong inductive bias favoring linearity (Brehmer et al., 1985).

These models are typically evaluated by comparing their predictions to averaged

human judgments, either via direct correlations, relative error rates, or qualitative

features, such as single or multiple modes in judgments (Kalish et al., 2004) or

non-monotonicity (Bott and Heit, 2004; Kalish, 2013). While previous research

has consistently shown that people are biased toward linearity, I suggest that
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these biases can be overruled by experimental paradigms (Chapter 3) or task

instructions (Chapters 5 and 7).

2.3.1 Experimental Paradigms

The experiments presented so far all followed the classical experimental paradigm

in function learning. Participants learn relationships from sequentially-presented

pairs of points and then, after enough training, have to either interpolate or

extrapolate from the learned data. At no point do participants see the whole

data set, instead they have to learn the relationship implicitly.

More recent experiments have presented all data simultaneously, in setups

resembling scatter plots. These experiments are far less taxing in terms of memory

demands, and all data is readily available to the participant. For a comparison

of the two approaches, see Figure 2.9.

(a) Setup in Busemeyer et al. (1993). (b) Setup in Little and Shiffrin (2009).

Figure 2.9: Examples of the two paradigms in function learning. In Busemeyer et al.

(1993) the two bars on the left indicate the two predictive variables, the larger bar on

the right the predicted and observed dependent variable. In this particular experiment,

all quantities are also represented numerically, and the participant receives feedback

on their accuracy. In Little and Shiffrin (2009) participants receive all training data,

presented as a scatter plot. They then have to predict the values of the dependent

value, the currently probed value highlighted by the blue rectangle.

Experiments in the scatter plot paradigm have demonstrated that human
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learners can discover and extrapolate a larger set of relationships, including com-

plex non-linear trends (Wilson et al., 2015; Schulz et al., 2017; Lucas et al., 2015;

Little and Shiffrin, 2009). However, a crucial question is if both these paradigms

tap into the same sort of inductive biases and if both paradigms test the same

cognitive capacity. In Chapter 3, I directly compare these paradigms and find

that not the presentation, but the memory demands of the task, significantly

influence learning.

2.3.2 Models of Function Learning and Generalization

Models of human function learning can be divided into rule-based, similarity-

based, and hybrid. Rule-based models postulate that humans learn explicit func-

tions (such as polynomials) by finding the best fitting function and parameters

from a small set of functions (Carroll, 1963; Brehmer, 1971, 1974). These models

can accommodate diverse patterns of extrapolation by specifying flexible rules

as hypothesized functions. However, standard rule-based models cannot explain

the human ability to learn and reproduce arbitrary functions, since all applicable

rules must be incorporated a priori.

In contrast, similarity-based models do not assume an explicit underlying

function, but instead, suppose that humans learn to associate pairs of values.

These models capture the flexibility with which human learners interpolate. How-

ever, similarity-based extrapolations tend to be linear or converge to a constant

value (Busemeyer et al., 1997), even when human learners extrapolate in non-

linear ways.

Given the complementary strengths of both approaches, hybrid models have

been suggested. These models tend to incorporate the ability to extrapolate

according to any of a fixed ensemble of rules while retaining similarity-based

models’ flexibility in interpolation (Kalish et al., 2004; McDaniel and Busemeyer,

2005).
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More recently, Gaussian processes have been proposed as a unifying ratio-

nal model that can represent both similarity and rule-based approaches while

explaining human behavior on various tasks (Lucas et al., 2015). Furthermore,

these models have shown promise as a means for reverse-engineering the inductive

biases that human learners use to extrapolate from arbitrary and sometimes com-

plicated relationships, capturing patterns of learning that cannot be accounted

for with traditional similarity or rule-based approaches (Wilson et al., 2015).

2.3.3 Open Questions in Function Learning and Outline of the

Thesis

While some previous studies have examined patterns in individuals’ inferences

(Wilson et al., 2015; Schulz et al., 2017; Kalish, 2013), these studies still neglect

essential questions about the representations and tacit beliefs behind participants’

judgments. For example, while models that take a distributional approach to

function learning have successfully explained human behavior, there is little direct

evidence that people track uncertainty or variability when faced with function

learning problems. There are also open questions about individual differences,

as most analyses have relied on aggregated judgments, or assume that individual

inductive biases are broadly similar (Kalish et al., 2007). In Chapter 4, I present

a first experiment examining if people track the variability of training.

A second issue regards how the hypothesis space over functions and the indi-

vidual functions themselves are represented and learned. One possibility is that

humans represent functions as parametric forms (Brehmer, 1974). A parametric

representation allows very efficient storage of the learned relation, as only a few

parameters have to be maintained. However, these approaches suffer from a lack

of flexibility of learning and also raise the question about which parametric forms

can be learned. On the other hand, the more popular associative approaches are

liable to criticisms about memory constraints, since, in principle, all data points



22 Chapter 2. Introduction

are required to interpolate or extrapolate. While it is possible to introduce no-

tions of memory decay, much like in exemplar models of categorization, precise

decay mechanisms have not been suggested. In Chapter 3, I contrast conventional

experimental paradigms in function learning and examine the effect of memory

demands on generalization.

A related question is how the hypothesis space can be modified and updated

in light of new evidence. A common characteristic of all computational models is

that they rely on specific families of parametric relationships, extremely flexible

one-size-fits-all inductive biases, or both. As a result, they tend to be unable to

explain the human ability to extrapolate in tremendously varied ways, many of

which can be expressed as simple rules (Lucas et al., 2012). While overhypotheses

have received ample attention in categorization research in recent years, function

learning has mostly approached the hypothesis space as a rigid ranking of alter-

natives. One notable exception is the recent work by Schulz et al. (2017). In

several experiments, Schulz et al. (2017) showed that participants could learn the

compositional structure inherent in relational patterns. Participants preferred

compositional over non-compositional patterns and extrapolated in ways better

described by a compositional model. Finally, participants could also remember

compositional patterns better than non-compositional alternatives, suggesting

that participants represent these functions more efficiently. In Chapters 6 and

7, I will return to the question of how functions in the hypothesis space can be

learned. I argue that people perceive and often apply compositional principles to

form complex functions, but that this ability is less general than the results in

Schulz et al. (2017) suggest.

Finally, while function learning research has focused on learnability and ex-

trapolation, it is plausible that people can perceive and exploit deep and abstract

similarities between learned relationships. For instance, take the graphs presented

in Figure 2.10. All eight patterns correspond to infection cases for the Spanish flu
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between 1918 and 1919 for eight cities in the UK, as collected by He et al. (2013).

While all patterns are characteristically different in their absolute numbers and

vary slightly in the exact onset and offset of their peaks, the overwhelming per-

ceptual impression is of a three-peak pattern. This perceived similarity is more

than just a mere visual impression. It can be the basis for more profound causal

inference, trying to uncover the latent structure that results in such a widespread

repeated pattern. These perceived structural similarities can be used to inform

current policies, even when the context varies somewhat. For instance, convinc-

ing arguments for lock-downs, social distancing, and “flattening of the curve”

were made based on case numbers of US cities 100 years earlier, for a pandemic

of a related, but potentially very different virus (National Geographic, 2020). In

Chapters 5 and 7, I explore how people use knowledge about a shared generative

process to produce extrapolations.

This thesis will extend work in function learning by examining hypothesis

spaces more closely. I will treat function extrapolations as generalization tasks.

I refer to more abstract learning as transfer learning. An instance of transfer

learning could be learning about the type of function applicable in a particular

domain, or the compositional structure inherent in a task. While this notion of

transfer is much more specific than the types of transfer discussed in analogical

reasoning experiments, this distinction is intended to separate extrapolation or

generalization in one particular task, from learning at the level of the hypothesis

space and transferring this abstract knowledge to a subsequent task. I will ap-

proach the functions themselves from a unifying computational perspective, using

Gaussian processes as a modeling tool.
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Figure 2.10: Data collected by He et al. (2013) presents the number of infected

individuals with the Spanish flu for UK cities and regions. While all eight patterns

presented here, and all other regions in the dataset, exhibit different absolute case

numbers and slight variations in the onset and offset of infections, the overall pattern

of three main outbreaks is striking.



Chapter 3

Function Representation and

Generalization

In this chapter, I examine how experimental presentation affects function learn-

ing, and what role memory requirements of previous function learning tasks play

in the subsequent function extrapolation.

Previous experiments have painted a mixed picture of the human ability to

generalize functions. Early work where participants had to learn relationships

from sequentially-presented examples has highlighted strong biases for linear ex-

trapolations. Moreover, cyclic or non-smooth relationships could only be inferred

after prolonged training with visual aids such as ticks or numeric values. These

results have led to the development of models that attach a special representa-

tional status to linear relationships (DeLosh et al., 1997; Kalish et al., 2004),

or assume that people have a strong inductive bias favoring linearity (Brehmer

et al., 1985). We will refer to experiments following the sequential paradigm as

function learning tasks. In contrast, more recent work, in which participants

are presented all data simultaneously, which we will call function estimation, has

shown that human learners can discover and extrapolate from complex non-linear

trends (Wilson et al., 2015; Schulz et al., 2017; Lucas et al., 2015).

25
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How do we reconcile these results? One possibility is that participants gener-

alize in these experiments in different ways, for reasons that may be perceptual,

cognitively innate, or experience-dependent. An alternative possibility is that

the same inductive biases and cognitive processes underlie both paradigms, and

differences between these tasks can be attributed to differences in their memory

demands.

In function learning experiments, participants have to maintain learned data

in memory and update and evaluate the appropriateness of a representation

against alternatives. In contrast, function estimation allows an effortless recall

of the data. Given that only a subset of the data is maintained, extrapolations

will resemble inductive biases in the absence of data. In contrast, having all data

visually available, as in function estimation, allows to counteract inductive biases

and facilitates extrapolations resembling richer functions.

3.1 Experiment

We set up an experiment to contrast extrapolations in function learning and

function estimation. To distinguish experimental presentation from memory re-

quirements, we introduced a new condition that shared presentational-, but not

memory-related characteristics with function estimation. In this new condition,

data were presented as scatter plots, but data points disappeared from display

immediately after the participant submitted her choice. Since the condition ex-

hibits similar characteristics to classical function learning tasks, we predicted

that extrapolations should more closely resemble function learning conditions, as

participants will have to rely on the recollection of the presented data for their

extrapolations. We will refer to the scatter plot condition presenting the full data

as Scatter+ and the new condition as Scatter-. We will refer to the traditional

function learning conditions as Bar.
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In both scatter plot conditions we did not connect the presented data points,

as previous research has shown that line plot presentations induce stronger biases

towards inferring sequential dependencies (Theocharis et al., 2019).

3.1.1 Participants

We recruited 322 participants via Amazon’s Mechanical Turk service1. Partic-

ipants received $0.40 for participation and took an average of eight minutes to

complete the experiment (M = 8.01, SD = 4.38). Participants had to have com-

pleted more than 50 approved tasks with an approval rate of 95% or higher.

Participants were randomly assigned to one of the nine conditions {flin, fx2 , fcos}

× {Scatter+, Scatter-, Bar}, as described below.

3.1.2 Materials

The data presented in the experiment was generated by one of three functions:

linear (flin), quadratic (fx2), or periodic (fcos). These functions were chosen to

allow for informative error patterns resulting from human inductive biases. Since

previous research reported strong biases for linear functions with zero intercepts

and 1/1 slope (we will refer to this function as f(x) = x), we selected a shallower

positive slope. The quadratic function was relatively flat in the training block

to test if participants would revert to linearity or choose non-linear alternatives.

Finally, a periodic function was used to evaluate if participants were able to

extrapolate in non-monotonic fashion. To allow space for extrapolation beyond

the function ranges, we normalized the data to span (0,1) in both the x and y

axis and then rescaled and centered the graph such as to span half the y-axis.

For the full set of materials after transformation, see Figure 3.1.

1We did not collect any information on gender or age in this experiment.
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Linear

(a) 0.7x+0.2

Quadratic

(b) 0.7x2 +0.18

Periodic

(c) −0.3cos(5πx)+0.5

Figure 3.1: Three functions, flin, fx2 , fcos, generated the underlying data.

3.1.3 Procedure

For the full experimental procedure, see Figure 3.2. Participants were instructed

that they would be presented with data and that they had to predict new values

given their understanding of the relationship in the data. Then, participants

proceeded to a block of training trials (the training block).

Bar Scatter+Scatter−

Tr
ai

ni
ng

Te
st

Figure 3.2: Participants were randomly assigned to one of the nine experimental

conditions. All participants performed a training block consisting of 40 value pairs

with feedback followed by a test block of 40 extrapolations without feedback.
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3.1.3.1 Training Block

In the Scatter+ and Scatter- conditions, the current test value (x) was marked

with a red line spanning the whole vertical range. Participants were prompted

to select a y value by clicking on the line. Once selected, the input value was

highlighted with a blue point. Selected points could be updated by re-selecting

a y value.

The selected values were submitted by pressing the space key. In the Bar

condition, current x values were presented as the width of a bar on the left of

the screen, and participants selected values by choosing the height of a bar on

the right. As in the Scatter+ and Scatter- conditions, participants could readjust

these values. In all conditions, x-values were presented sequentially in ascending

order. If the selected y value was within the error margin (±0.05 of the true

y), the true value was shown in red for 600 milliseconds. Afterward, a message

indicating that the choice was correct and the remaining number of trials was

shown.

If the selected value was not inside the margin, the message indicated an

unsuccessful submission. Then, the selected value was removed, and participants

had to resubmit. After erroneous submissions the true y was displayed as a red

bar (Bar) or a red dot (Scatter+, Scatter-). Participants had to resubmit values

until an admissible y was chosen. Participants received 40 points in total during

the training block.

3.1.3.2 Test Block

The test block followed the same procedure as the training block, but no feedback

was provided. After submitting 40 values in the test block, participants concluded

the experiment by completing an optional short survey. For screenshots of the

experimental stimuli and instructions, see Appendix B.
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3.2 Results

3.2.1 Functions and Presentation Form

Consistent with previous findings, mean absolute error (MAE) in the test block

was largest for fcos (MAE = 0.24, SD = 0.1, n = 108). Errors for fx2 and flin

were small, with flin exhibiting the smallest error (MAEx2 = 0.14, SDx2 = 0.09,

nx2 = 106, MAE lin(x) = 0.11, SDlin(x) = 0.1, nlin(x) = 108).

The errors in the presentation conditions were compatible with our hypothesis,

with Scatter+ lowest (MAE = 0.1, SD = 0.1, n = 106), and Scatter- and Bar at

similar, higher levels (MAEBar = 0.19, SDBar = 0.12, nBar = 110; MAEScatter-

= 0.19, SDScatter- = 0.11, nScatter- = 106). For all errors in the subgroups of

function and presentation conditions, see Figure 3.3.

Scatter+ Scatter− Bar

0.0

0.1

0.2

0.3

0.4

M
AE

Function
Linear
Quadratic
Periodic

Figure 3.3: In all presentation conditions, participants exhibited the lowest errors for

linear, followed by quadratic and periodic functions. Boxplots display first, second

(median) and third quartiles. Whiskers show the ±1.5 interquartile range (IQR).

Each point represents the MAE of one participant.
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3.2.2 Data Availability and Presentation

To assess the effects of data availability (DA, a binary variable denoting if the

condition was Scatter+, or either Scatter- or Bar) and function (flin, fx2 , fcos)

on errors, while controlling for the effect of presentation (Scatter denoting if

the presentation condition was either Scatter+ or Scatter-, or Bar), we fitted a

generalized linear model (GLM): YMAE ∼ β0 + βf × (βScatter + βDA). The GLM

was specified with an identity link function and allowed for interactions between

Scatter and function as well as DA and function.

In concordance with previous findings, fcos had a significant positive effect on

error. As predicted by our hypothesis, data availability had a significant, small

negative effect on error, but presentation (Scatter) was non-significant. No other

main effect and none of the interaction terms had a significant effect. For the full

GLM results, see Table 3.1. For all extrapolations performed by the participants,

see Figure 3.4.

Interim Discussion

The results are consistent with our hypothesis that differences in errors are at-

tributable to differences in data availability. However, a stronger test of our

hypothesis lies in the patterns of extrapolations that participants make. Do these

patterns differ systematically between presentation conditions, or are differences

explainable in terms of condition-independent biases?

In the final section, we will explore how differences in availability imposed

by our experimental design are reflected in the participants’ extrapolations. To

analyze these extrapolations, we compared human extrapolations to two Bayesian

models, one with low available data and one considering all available data.

These models allow us to capture our assumptions about the underlying rep-

resentation learned in the two types of experimental conditions. Examining the
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Table 3.1: Results of the GLM model assessing if function type (flin, fx2 , fcos), presen-

tation (Scatter), or data availability (DA) were predictive of MAE in the test block.

The fcos condition had a significant positive effect on MAE. In addition, having all

data available (DA, corresponding to condition Scatter+) had a significant, small

negative effect.

β SE z P > |z| 95%CI

β0 0.13 0.02 8.78 p < 0.001 0.1,0.16

fcos(x) 0.15 0.02 7.28 p < 0.001 0.11,0.2

fx2 0.02 0.02 0.75 0.45 −0.03,0.06

Scatter β < 0.01 0.02 0.22 0.82 −0.04,0.05

DA −0.08 0.02 −3.75 p < 0.001 −0.13,−0.04

Scatter×fcos(x) −0.03 0.03 −1.02 0.3 −0.01,0.03

Scatter×fx2 0.02 0.03 0.75 0.46 −0.04,0.08

DA×fcos(x) −0.01 0.03 −0.24 0.8 −0.07,0.05

DA×fx2 β < 0.01 0.03 0.04 0.97 −0.06,0.06
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Figure 3.4: All participant extrapolations (gray lines) in the nine experimental con-

ditions. Submissions within the admissible error for the training block are displayed

on the left-hand side of the dotted vertical line. Extrapolations for the test block

are displayed on the right-hand side. Function conditions are presented by column,

presentation conditions by row.
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models extrapolations and contrasting them with the experimental data allows

us to assess if the participants extrapolations corresponded to our experimental

manipulation.

3.3 Modeling Function Extrapolations

The computational problem faced in extrapolation tasks amounts to predicting

new values yn+1 for test values xn+1, conditional on previously learned xn,yn

and a prior belief p(f) over possible functions. We will adopt a Gaussian pro-

cess perspective on regression, an approach that has been applied successfully in

previous function learning research (Lucas et al., 2015; Schulz et al., 2017).

A Gaussian process specifies a distribution over functions f(x) ∼ GP (µ,k),

where µ(x) = E[f(x)] and k is the covariance kernel k(x,x′) = cov(f(x),f(x′)).

The kernel specifies how much values of x′ depend on the other values x and

specifies a similarity measure over x. For a brief introduction into Gaussian pro-

cesses, see Appendix A. We assume that two sets of priors can capture participant

extrapolations in our study — a prior over kernel types describing the space of

possible functions fi ∼ F , and a prior for individual kernel parameters θfi
.

3.3.1 Human Function Priors

To specify a plausible prior over functions F , we closely followed Lucas et al.

(2015). The prior over functions proposed in Lucas et al. (2015) was motivated

by previous empirical results and models trained with this prior could account for

a wide range of experimental results in function learning. We used the same prior

probabilities for functions F , favoring f(x) = x (Linear+) over negative linear

functions (Linear−), and linear functions over other monotonic functions (RBF,

the radial basis function kernel). Since our experiment included periodic data

that we did not want to exclude a priori, we added a periodic kernel (Periodic)
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with good coverage over the range of x,y. We chose a low prior weight for the

periodic to account for the difficulty in learning non-monotonic functions (Bott

and Heit, 2004; Kalish, 2013). For a full list of parameter priors, θ, see Table 3.2;

for samples of the prior functions, see Figure 3.5.

With the priors F and θ we can express the task faced by our participants in

general terms:

p(yn+1|xn+1xn,yn,f) =
∫

f
p(yn+1|xn+1,y,f)p(f |x,y)df (3.1)

Linear+

(a)

Linear−

(b)

Quadratic

(c)

Periodic

(d)

RBF

(e)

Figure 3.5: Ten samples for each of the functions constituting the prior over functions

F . The prior consisted of: (a) a linear kernel biased towards f(x) = x, (b) a negative

linear, (c) a quadratic, (d) a periodic, and (e) a RBF kernel. All kernels had additional

intercept terms. The distribution over functions F was chosen to closely match Lucas

et al. (2015) and was proportional to 8,1,0.1,0.01,0.01.

Given appropriate priors and Equation 3.1 a variety of human inductive biases

can be accounted for, from strong biases for f(x) = x, to results in iterated

learning experiments (Lucas et al., 2015).

However, this model assumes that all previously encountered data are equally

available and inform posterior inference. In some function learning experiments

where participants repeat training until they achieve a very low error rate, these

assumptions may be appropriate. In other contexts, including many sequential

function learning problems in the natural world, they are less plausible.
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Table 3.2: Priors used to specify the two models (curvature of the quadratic kernel,

θc; period of the periodic, θπ; lengthscale of the RBF,θl). All models had a fixed

noise variance of 0.0025, which matched the admissible error in the test set. All

models hat an intercept with a prior covering the training range. Both linear kernels

had slope parameters, expressing the prior preference for positive and negative slopes

respectively.

σ2 Intercept Slope θc θl θπ

Linear+ Exp(1
6) N (0, 1

2) N (1, 1
10) – – –

Linear− Exp(1
6) N (1, 1

2) N (-1, 1
10) – – –

Quadratic Exp(1
6) N (1

2 ,1) N (0,1) N (0,2) – –

Periodic Exp(1
6) N (1

2 ,1) – – N (1, 1
4) N (1

2 , 1
4)

RBF Exp(1
6) N (1

2 ,1) – – N (1, 1
4) –

3.3.2 Modeling Data Availability

We contrasted the predictions of a model trained on the full data set (the 40

training points) with models that had only a sparse set of data available. As a

first approximation of the effect of data availability, we assumed that only the

last k ∈ {1,5,10,20} points in the training block were available in the Bar and

Scatter- conditions.

While the amount of data underlying participants’ extrapolations might differ

systematically, our analysis is not particularly sensitive to the size of the subset.

In general, larger subsets will emphasize the training data, while smaller sets will

result in posteriors emphasizing prior inductive biases since the likelihood of the

data plays a diminished role. To contrast the effect of the sparsity of the data

with the role of the function prior, we evaluated a full and a sparse (k = 5) model

that did not favor any particular type of function (flat prior). For the posterior

probability over functions for these models, see Figure 3.6.
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3.3.3 Posterior Mass for Functions

The models trained on linear data generally assigned high posterior mass to posi-

tive linear functions. Only if the model did not exhibit any strong prior preference

for linearity or when only a few data points were assumed to be available (k ≤ 5)

did the models assign some posterior mass to other options.

Our analysis revealed that the training data presented was not strongly in-

dicative of a non-linear trend for quadratic conditions. As a result, nearly all

models exhibited large posterior mass for positive linear functions. Only when

all data was assumed to be available was the evidence sufficient to overwrite the

strong prior preference for linearity and assign some posterior mass to quadratic

functions.

For periodic conditions, our results exemplify the trade-off between the strength

of prior inductive biases and the amount of evidence available. Assuming no

strong prior preference for a particular type of function, even a sparse model

(k = 5) already posits non-negligible posterior mass for a periodic relationship.

In contrast, models with priors exhibiting strong inductive bias towards linearity

require larger amounts of evidence (k ≥ 20) to posit a periodic function.

Similar to the role of abstract priors over function types, F , the posterior over

function parameters θf will depend on the sparsity of the data. In the absence

of sufficient evidence, posterior parameters will reflect the prior uncertainty. To

exemplify the effect of the amount of evidence and the resulting inferred functions,

consider Figures 3.7 and 3.8. While for sparse data, the posterior distributions

over function parameters are largely reflective of the prior, the posterior for the

full model is heavily peaked on characteristic values for the data.
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0 1

Linear+

Linear−

RBF

Cos

Quadratic

Linear

0 1

Quadratic

0 1

Periodic

Model
1 Human
5 Human

5 Flat
10 Human

20 Human
40 Human

40 Flat

Figure 3.6: The inferred posterior probability for the five functions in each condition.

−1 0 1

Linear 5 points

−1 0 1

Linear 40 points

Parameters
σ2 Slope Intercept

Figure 3.7: Given larger amounts of evidence, the posterior distributions for the

intercept will concentrate on the true intercept.
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−1 0 1 2

Periodic 5 points

−1 0 1 2

Periodic 40 points

Parameters
σ2 π l Intercept

Figure 3.8: Conditional on the full training data the posterior distribution for the

periodic function strongly concentrates on the true period.

3.3.4 Posterior Model Extrapolations

While the model’s posterior mass over function types reveals which kind of ab-

stract function the model infers, we are also interested in the corresponding ex-

trapolation patterns. Since each model specifies a hierarchical distribution over

function types and corresponding function realizations, posterior model predic-

tions amount to posterior densities. For the resulting posterior densities for the

full model, as well as a sparse model with a uniform prior over function types and

a sparse model with a strong prior preference for linear functions, see Figure 3.9.

In general, sparse and full models captured the strong inductive biases for

positive linear functions. Furthermore, our sparse model predicted the strong

inductive bias for f(x) = x in Scatter- and Bar conditions, aligning well with the

participants’ data. The sparse model that did not prefer linear functions a priori

exhibited similar inductive biases, but was also more diffuse, potentially due to

the contribution of RBF or periodic functions.

For fx2 , both full and sparse models reflected the strong prior preference for

positive linearity. As a result, the full model did not capture the extrapolations
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of participants in Scatter+. While the model extrapolated from the available

data linearly, participants performed steeper, quadratic-like extrapolations (see

Figure 3.4). The sparse model was more predictive of the participants’ extrapo-

lations in Scatter- conditions, extrapolating in a steep linear fashion. Similar to

models trained on linear data, the model with a uniform prior over F resulted in

similar, albeit more diffuse, posterior density.

For fcos, a sparse model with a strong bias towards linearity did not capture

the participants’ extrapolations well. While the model did favor positive linearity

and extrapolated accordingly, many participants exhibited non-monotonic, high-

variance extrapolations. In contrast, the full model captured the highly periodic

extrapolations in the Scatter+ condition and closely resembled human extrapo-

lations. A sparse model that did not assume a strong prior preference for linear

functions resulted in more diffuse posterior density, which was better aligned with

participants’ extrapolations.

3.3.5 Recovering Experimental Conditions from Likelihoods

To further evaluate how well our models captured characteristic differences be-

tween the experimental conditions, we attempted to recover participants’ assigned

experimental conditions from their extrapolations. We classified participants as

either belonging to full or sparse experimental conditions according to the likeli-

hood of their extrapolations given our models. We labeled a participant as be-

longing to a sparse condition if the model with the highest likelihood had k ≤ 10.

We then contrasted this classification with the true experimental condition. For

confusion matrices for this classification procedure, see Figure 3.10. For the three

participant extrapolations that had the highest likelihood for each model, see

Figure 3.11.

This classification validated our general modeling results. While our method

recovered participants’ experimental condition reasonably well for linear data (65
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Figure 3.9: Posterior density for the models, with darker colours corresponding to

higher posterior density. In concordance with our hypothesis, participants in the

Scatter+ condition kept a full representation of the training data available, corre-

sponding to the full model (top row). The mid row present the sparse model posterior

density. The bottom row presents the sparse model with a uniform prior distribution

F .
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out of 108 classified correctly, pcorrect < 0.52), for quadratic (46 out of 106 classi-

fied correctly, pcorrect = .93) and periodic data (41 out of 108 classified correctly,

pcorrect > .99), our method exhibited asymmetric confusions. For quadratic data

our method resulted in high misclassification of Scatter+ and chance level per-

formance for Scatter- and Bar. Similarly, for periodic data, our model highly

favors Scatter+, consistent with a large proportion of participants performing

cyclic extrapolations.

Figure 3.10: We contrasted our classification with the true experimental conditions.

Our classification captured the effect of data availability for flin. However, it exhibited

systematic mis-classification for fx2 and fcos. In fx2 , we were at chance level classifying

participants as belonging to Scatter- or Bar, and failed to recognize Scatter+. In

fcos, our procedure mis-classified participants in the sparse conditions, but captured

extrapolations in the Scatter+ condition.

3.4 Discussion

We hypothesized that differences between function learning and function estima-

tion experiments could be attributed to participants having direct access to all

data points in the latter. More precisely, we sought to test the idea that the

same inductive biases are at work in both settings, but that the reduced access
2All test here are one-sided exact Binomial tests against chance (0.5).
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Linear Quadratic Periodic

Model Points
1 5 10 20 40

Figure 3.11: Three extrapolations with the highest likelihood in each function condi-

tion. We categorized participants’ extrapolations by contrasting the likelihood of our

full and sparse models.

to data in function learning designs causes these biases to play a stronger role

in shaping participants’ extrapolations. As we anticipated, participant behavior

in both Scatter- and Bar was almost indistinguishable, demonstrating the same

qualitative patterns. Furthermore, both Scatter- and Bar were clearly different

from extrapolations in the Scatter+ conditions.

However, we found mixed support for the more detailed hypotheses reflected

in our Bayesian model. Behavior in both linear conditions was as predicted, with

participants in Scatter- and Bar conditions tending to extrapolate according to

the f(x) = x function, that past research has shown to be favored a priori, rather

than the true function. In the quadratic conditions, our model did not capture

participants’ behavior, especially in the Scatter+ condition where participants

were more likely than the model to infer a non-linear relationship. There are

many possible explanations, one of which is that our simplistic assumptions about

participant memory failed to capture the loss of precision in the locations of

points.

Perhaps the most interesting deviation between the model’s predictions and
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participants’ judgments is in the fcos conditions. Contra the model’s predictions

— as well as our expectations — individual participants were quick to infer non-

monotonic functions, even in the Scatter- and Bar conditions. This result also

admits several explanations, but one intriguing possibility is that people are better

at tracking high-level, qualitative properties of functional relationships than the

details of those relationships’ parametrization.

In the next chapter, we will continue exploring what kind of abstract proper-

ties people perceive and track when they learn continuous relationships.



Chapter 4

A Distributional Space of Functions

The previous chapter has highlighted that people track high-level, qualitative

properties of the functions they learn. This chapter explores this result by exam-

ining what kind of abstract properties people track when learning about functions.

More specifically, I will analyze if people can track the variability of encountered

functions.

While previous research has shed light on function learning and the represen-

tations and inductive biases that make it possible, some fundamental questions

remain. For example, models that take a distributional approach to function

learning have successfully explained human behavior. However, there is little di-

rect evidence that people track distributional information — uncertainty or vari-

ability — when faced with function learning problems. This question has been

unanswerable in previous work that relied on aggregated judgments or assumed

that individual inductive biases are broadly similar (Kalish et al., 2007). Even

the few studies that focus on inference patterns (Kalish, 2013; Wilson et al., 2015;

Schulz et al., 2017) still neglect questions about the tacit beliefs behind partici-

pants’ judgments. Only recently, experiments have started to explore the role of

uncertainty in function learning. In Schulz et al. (2015), participants judged func-

tions to be more predictable when they were smooth or exhibited low variance,

45
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following the preferences of a probabilistic model. Similarly, Stojic et al. (2018)

showed that participants’ predictive accuracy in a function learning task corre-

lated with their confidence ratings, again resembling the uncertainty estimated

by a probabilistic model.

Here, we expand on this work and attempt to characterize how people repre-

sent uncertainty when they learn functions.

4.1 Markov chain Monte Carlo with people

To uncover the psychological space that participants learn when learning func-

tions, we apply Markov chain Monte Carlo with people (hereafter MCMCP, San-

born et al., 2010).

MCMCP is motivated by Markov chain Monte Carlo (MCMC), a method

in statistics that can generate samples from an arbitrary target distribution. In

MCMC, samples from the target distribution are produced by iteratively compar-

ing a new sample to the current sample (or state of the sampler), probabilistically

selecting the more likely sample under the target distribution. The selected (or

accepted) sample then becomes the sampler’s new state. If the selection proce-

dure satisfies a set of mathematical criteria, it can be proven that, after enough

time, the accepted samples will correspond to samples of the target distribution.

Sanborn et al. (2010) showed that Markov chain Monte Carlo can be used

as an experimental method to elicit posterior distributions from people using

a simple forced-choice task. As in MCMC, in MCMCP, participants have to

select between two samples, one corresponding to a new proposed instance of a

category of interest, the other being the sampler’s current state. Participants are

asked to select the more representative sample and, based on their choice, the

state is updated. This choice can be shown to correspond to a statistically valid

acceptance procedure Sanborn et al. (2010); thus, given enough of these forced
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choices, samples obtained from MCMCP will be samples from the participants’

implicit category representation.

Thus, MCMCP offers a method to explore the psychological representational

space and has been successfully applied to elicit the representations of complex

stimuli, such as peoples’ representation of facial emotional expressions (Mar-

tin et al., 2012). Previously, MCMCP has been used in a function learning

setting1 to examine if participants prefer compositional over non-compositional

functions (Schulz et al., 2017). Since Schulz et al. (2017) were interested in pref-

erences for types of functions (compositional vs. non-compositional), the samples

presented consisted of discrete varieties of functions and did not explore the dis-

tribution of function parameters.

In contrast, in this work, we directly explore the distributional space of

the parameters governing linear functions. This approach lets us uncover how

learned functions are represented without constraining participants’ choices to

pre-specified sets of materials. For an overview of how the forced-choice task

results in the posterior distribution, see Figure 4.1.

Adopting MCMCP also allows us to explore new questions — do participants

represent variability in the training relationships? Do they form a single, de-

terministic functional relationship, or do they form posterior distributions over

parameters, reflective of the variability in training? In turn, this question about

representation, can inform more general future questions: do typical extrapola-

tion patterns amount to maximum a posteriori estimates for a learned function?

Or do they correspond to samples from a range of probable parametrizations?

1Function learning has been more extensively studied in a closely related paradigm, iterated
learning. Iterated learning experiments can elicit participants’ shared expectations and have
revealed strong inductive biases for positive linear functions (Kalish et al., 2007).
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Figure 4.1: The 240 choices submitted by the participants corresponded to three

Markov chains. By accepting or rejecting proposed parametrizations for the functions,

participants traverse this representational space and eventually converge to a region

reflecting the posterior over parameters. The process starts at a random position and

slowly moves towards the typical set of the posterior distribution (a). Samples from

the typical set correspond to posterior draws from the target distribution (b). For this

participant, the chains converge after 35 iterations for β0 and after 15 iterations for

β1. The corresponding distribution after this burn-in period closely matches the true

relationship learned in the training phase, in terms of both its mean and variance (a,

dashed line and gray range).
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4.2 Experiment

In this experiment, we examine how participants represent linear functions when

presented with sets of training examples. We hypothesize that participants learn

both the parameters generating the function and the variability of the relation-

ship, i.e., they will learn how much slopes and intercepts vary, while also learning

the specific modes of slopes and intercepts. Therefore, we expect participants to

form posterior distributions over the training parameters, with the variance of

that posterior reflective of the training.

We distinguish between training functions with positive and negative slopes

since previous research has highlighted strong inductive biases for these relation-

ships. Similarly, it has been shown that people are biased to extrapolate matched

linear functions, and their extrapolations are influenced by data-boundaries (De-

Losh et al., 1997). In areas of the extrapolation range that are close to zero, par-

ticipants adjust slopes towards the boundary (Brown and Lacroix, 2017; Kwantes

and Neal, 2006). Thus, we contrast steep and shallow linear functions to test how

different offsets and degrees of steepness are represented. We expect that highly

salient functional relationships, like matched positive functions, will be easier to

learn and result in more peaked posterior distributions if the training exhibits

low variability. For high variability training, and especially if the function is not

favored as strongly (for instance, a function with a shallow negative slope), we

expect broader, less peaked posteriors. Finally, we hypothesize that, especially in

high variability conditions, some participants will not exhibit uni-modal posterior

distributions and might consider several potential generating functions broadly

consistent with the learned function.

Contrasting these functions resulted in a 2 × 2 × 2 between-subjects design

(direction of the function: positive or negative, steepness: shallow or steep, the

variability of the training data: low or high).
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4.2.1 Participants

We recruited 454 participants (M age = 33, SDage = 8.63; 91 female, 176 male,

1 other, 186 refused information on gender) on Amazon Mechanical Turk. Par-

ticipants had to have completed more than 50 approved tasks with an approval

rate of 95% or higher. They received $1.33 for participation and took an average

of 17 minutes (M = 17.25, SD = 8.59) to complete the experiment. Participants

were randomly assigned to one of the eight conditions.

4.2.2 Materials

The parameters generating the functions in the experimental conditions differed

in the direction of the slopes, as well as in their steepness. In addition, parameters

in the training set exhibited either low or high variance for intercepts and slopes.

For the full set of experimental conditions, see Table 4.1.

Table 4.1: The materials were draws from sets of linear functions with intercepts β0

and slopes β1 drawn from high- and low-variance normal distributions (SDβ0 ,SDβ1).

β0 SDβ0 β1 SDβ1

C0.5,low 0.25 0.05 0.5 0.025

C1.0,low 0 0.05 1 0.025

C−0.5,low 0.75 0.05 −0.5 0.025

C−1.0,low 1 0.05 −1 0.025

C0.5,high 0.25 0.3 0.5 0.15

C1.0,high 0 0.3 1 0.15

C−0.5,high 0.75 0.3 −0.5 0.15

C−1.0,high 1 0.3 −1 0.15

To create the 25 training sets, corresponding to independent and identically
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distributed (i.i.d.) realizations of β0,β1 ∼ N (µ,σ), with µ and σ matching the

experimental condition, we systematically sampled 10,000 pairs and selected the

most normal and uncorrelated sets2. Then, we generated the corresponding linear

function for a range of 15 points for x in 0–1 for all sets. One of those 15 values

was picked at random and constituted the interpolation target. For the resulting

materials, see Figure 4.2.
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Figure 4.2: The eight conditions differed in the functions presented during training.

Functions were either positive (a, b, e, f) or negative linear relationships (c, d, g, h).

Participants had to extrapolate one randomly selected data point (marked with an x)

in 25 successive interpolation tasks.

4.2.3 MCMCP

Proposals were generated by two symmetric Gaussian distributions, N (µ,σ), to

allow for both local and distant proposals σβ0 ∈ [0.14,0.98], σβ1 ∈ [0.21,1.47],

respectively. At each iteration, the local proposal was selected with a probability
2All Shapiro-Wilk tests yielded p > 0.99, and all correlation coefficients were in −0.01–0.01
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of 0.8 and a distant proposal with a probability of 0.2. Proposals were further

restricted to be in bounds β0 ∈ [−0.5,1.5], β1 ∈ [−1.5,1.5], and if less than four

points of the function realization were visible on the screen, the proposal was

automatically rejected, and a new proposal was resampled.

Participants traversed three different, interleaved chains since multiple chains

allow a wider application of convergence diagnostics and reduce the impact of the

particular starting state. The starting values for these chains were obtained by k-

means clustering of pilot data (n = 8, one participant per condition). This resulted

in the following starting values β0 = {0.12,0.1,0.58},β1 = {0.92,−0.94,−0.28} for

chains one to three.

4.2.4 Procedure

Participants were instructed that they would learn the relationship between two

proteins, Zenopin and Mepradin. Participants were told that the concentration

of Zenopin was related to Mepradin, but that the extent varied between humans.

Participants were also instructed that they would be presented with examples of

the relationship, as observed in different people and that they would be asked to

interpolate the relationship. They were then instructed that after the training

phase, they would be presented with pairs of proposed relationships, all observed

for a new person, and would have to choose which of the two was more likely

to resemble the learned relationship. After reading the set of instructions, the

participants were tested on their comprehension. If participants did not respond

correctly in the questionnaire, they had to restart the instructions.

4.2.4.1 Training Phase

In the training phase, participants were presented with 25 interpolation tasks

presented as scatter plots. In each task, they were instructed that the scatter

plot depicted the relationship between the two protein concentrations for a new
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person. They then had to guess the concentration of the protein by selecting the

height of the corresponding value on the plot (on the y-axis). Participants were

shown the correct value as feedback for one second, and if their choice deviated

by more than ±0.05 from the actual value, they had to readjust their selection.

4.2.4.2 Test Phase

The test phase consisted of 240 forced-choice tasks, corresponding to 80 inter-

leaved iterations of the three Markov chains. On each trial, participants were

presented with two adjacent scatter plots, one corresponding to the current state

of the chain and the other reflecting the proposed new state (in randomized or-

der). Participants had to select the plot they believed most likely to depict the

relationship in the training phase. After the test phase, participants completed

a short survey, were debriefed, and compensated. See Figure 3.2 for a depiction

of both training and test phase. For screenshots of the experimental stimuli and

instructions, see Appendix C.

4.3 Results

We excluded participants from the analysis if their chains did not converge to the

stationary distribution. Many criteria for convergence checks have been suggested

in the literature; here, we applied one of the most commonly used evaluations,

R̂ (Gelman et al., 2013; Vehtari et al., 2019). R̂ estimates the ratio between

within-chain variances and between-chain variance and thus provides a measure

of how (self-)similar chains are.

In general statistical practice, R̂ should not exceed a value of 1.1. However,

such a strict application of this diagnostic is not realistic in most MCMCP ex-

periments, since human judgments might exhibit more correlated choices and the

number of iterations in experiments is usually considerably lower than in statis-
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Test PhaseTraining Phase

Figure 4.3: Participants had to complete a training phase and a test phase. In the

training phase, they were asked to interpolate the concentration of a fictitious protein

for 25 different people (with feedback). In the test phase, they were presented with

240 forced-choice tasks, for which they had to choose the scatter plot that most re-

sembled the relationship in the training phase. The choices were presented in random

order and corresponded to a Markov chain, in which the participant implemented the

acceptance function.

tical applications. Therefore, we incrementally calculated R̂ values for chains for

each participant and selected the lowest overall R̂, with the additional constraints

that the first 20 samples of the chain were always discarded and the resulting

chains had to be at least 20 iterations long. We then used the maximum of the

intercept and slope R̂ values to apply exclusion criteria and determine burn-in.

Similar to Ramlee et al. (2017), we excluded participants who exhibited R̂ ≥ 2.

Furthermore, we excluded participants who required more than one correction in

the interpolation task. Given that the interpolation function was deterministic,

most participants did not require many corrections (Mdn = 0, IQR1–3 = [0,1],

max = 44).

In total, these methods excluded 262 participants (convergence exclusions:

224, interpolation exclusions: 72). This high number of exclusions was expected

given the correlated, bivariate parameter space, and previous results (Sanborn

et al., 2010). For group sizes after exclusions, see Table 4.2.
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4.3.1 Determining Burn-in

To determine how many trials were required on average for the Markov chains to

converge, we used the iteration for which R̂ was optimal for each participant. On

average, chains required 33 iterations to reach optimal burn-in and the resulting

optimal R̂ values were well below 2, MR̂ = 1.4, SD = 0.2. Conditions did not

differ considerably in terms of the optimal iterations or the resulting R̂ values.

For the full list of burn-in values, see Table 4.2. For all subsequent analyses, we

discarded all points of the chain before the individual burn-in index.

Table 4.2: Condition sizes before (Ntotal) and after exclusion (N). We calculated the

optimal burn-in iteration for each participant Mburn-in, SDburn-in and the resulting

acceptance probabilities (Macc, SDacc).

Ntotal N Mburn-in SDburn-in Macc SDacc

C0.5,low 48 25 34.88 14.49 35 17

C1.0,low 63 21 31.37 12.01 42 10

C−0.5,low 52 19 34.37 13.73 37 13

C−1.0,low 64 22 29.59 11.59 38 15

C0.5,high 59 35 32.29 13.22 38 14

C1.0,high 57 26 32.08 12.24 45 9

C−0.5,high 56 29 35.66 12.75 42 13

C−1.0,high 55 15 29.40 10.67 36 12

4.3.2 Acceptance Probabilities

Acceptance rates for MCMC samples should range between 20–40% (Roberts

et al., 1997). Mean acceptance probability was in that range, M = 39%,SD = 13,

indicating that the proposals were wide enough to traverse the parameter space.
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Between conditions, the mean acceptance probabilities for participants varied,

ranging from 35–45%; for all acceptance probabilities, see Table 4.2. For each

condition, acceptance probabilities for each chain did not vary substantially and

were similar to the general acceptance rates (not shown).

4.3.3 Posterior Distributions

Slopes differed significantly between conditions, with participants trained on neg-

ative slopes preferring negative slopes, M β1 = −0.16, SDβ1 = 0.53, and partici-

pants trained on positive slopes preferring positive slopes, Mβ1 = 0.19, SDβ1 =

0.45, t(165.33) = −4.74, p < .00013.

For conditions with negative slopes in the training sets, steep and shallow

conditions exhibited significantly different posterior slopes, with lower slopes for

steep compared to shallow conditions (M−0.5 = −0.05, SD−0.5 = 0.45; M−1.0 =

−0.29, SD−1.0 = 0.59; t(65.58) = 2.08, p < .05). For conditions with positive

slopes in the training sets, there was also a significant difference in posterior

slopes. However, this difference was not in the predicted direction, as slopes in

the shallow condition were on average larger than in the steep condition, M0.5 =

0.29, SD0.5 = 0.4, M1.0 = 0.05, SD1.0 = 0.47, t(89.75) = −2.89,p < .01. Posterior

intercepts in conditions with negative training slopes ([−0.5,−1.0]) did not differ

significantly between steep and shallow conditions, M−0.5 = 0.52, SD−0.5 = 0.21,

M−1.0 = 0.6, SD−1.0 = 0.3, t(62.84) = 1.38, p > .1, nor for conditions with positive

training slopes, M0.5 = 0.35, SD0.5 = 0.2, M1.0 = 0.5, SD1.0 = 0.25, t(88.71) =

3.31, p < .05.

Equally, per-participant SDs for slopes did not differ significantly between

high and low variability conditions, Mlow,β1 = 0.49, SDlow,β1 = 0.26, Mhigh,β1 =

0.55, SDlow,β1 = 0.25, t(180.07) = −1.39, p > .1. However, for intercepts, per-

participant SDs did differ significantly between high and low variability con-
3All tests are unequal variance, two-sided t-tests.
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Figure 4.4: The posterior densities and the true training means (solid lines) and

standard deviations (dashed lines). The posterior densities exhibited multiple modes,

some centered in close proximity of the true parameters.
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Figure 4.5: Posterior densities for one participant in each condition. Lines represent

the true values and standard deviations (dashed lines) in the experimental conditions.
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ditions, with high variance conditions resulting in higher SD, Mlow,β0 = 0.26,

SDlow,β0 = 0.11, Mhigh,β1 = 0.31, SDlow,β1 = 0.11, t(182.48) = −2.46, p < .05.

Visual inspection revealed that posterior distributions in all conditions were

multimodal and heavily skewed, which complicated the analysis. In general, the

posterior densities suggested that the modes of the posterior distributions were

often close to the learned parameters (see Figure 4.4; for a selection of posterior

distributions for one participant in each condition, see Figure 4.5).

Table 4.3: Posterior means and variances per condition, for function intercepts (β0)

and slopes (β1).

Mβ0 SDβ0 Mβ1 SDβ1

C0.5,low 0.34 0.32 0.32 0.62

C1.0,low 0.52 0.40 0.00 0.78

C−0.5,low 0.49 0.37 −0.02 0.73

C−1.0,low 0.65 0.40 −0.40 0.77

C0.5,high 0.35 0.39 0.27 0.71

C1.0,high 0.47 0.40 0.07 0.81

C−0.5,high 0.54 0.40 −0.07 0.77

C−1.0,high 0.52 0.44 −0.20 0.83

Since the means and standard deviations of multimodal, heavily skewed distri-

butions are not good representations of the underlying data, and because we were

interested in characteristic modes of the distributions, we used mixture models

to identify dominant modes of the posterior distributions.

4.3.3.1 Estimating Posterior Density Clusters

We estimated Gaussian mixture models that best described the distributions for

each experimental condition. We incrementally increased the number of com-
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ponents and selected the model with the lowest Bayesian Information Criterion

(BIC )4.

Figure 4.6: Clusters obtained by fitting a Gaussian mixture model (oval shapes). The

top three clusters (colored shapes) accounted for a large proportion of the data and in

general matched the distribution learned in the training phase well (mean parameters

of the true distribution in yellow).

The clustering produced a moderate number of clusters, reflecting the multi-

modal nature of the data. In general, each condition was estimated to correspond

to a mixture of 1–8 clusters (M = 4.5,SD = 2.56), and the largest clusters closely

matched the different training conditions. For Kullback-Leibler (KL) divergences

between training distribution and the inferred clusters, see Table 4.4; for the

number of clusters, weights, means and covariances for the largest clusters, see

Table 4.5; for plots of the clusters, see Figure 4.6.

4Estimating the mixtures with a Bayesian Dirichlet process mixture model yielded very
similar results.
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Table 4.4: KL-divergence between the training distribution and the three largest

clusters. In general, one of the largest clusters corresponded well to the training

distribution.

KLc=1 KLc=2 KLc=3

C0.5,low 2.18 1.1 1.95

C1.0,low 1.74 42.1 5.85

C1.0,low 1.35 − −

C−1.0,low 0.31 1.76 24.16

C0.5,high 0.83 10.37 −

C1.0,high 1.06 9.76 2.95

C−0.5,high 1.49 2.66 4.25

C−1.0,high 1.02 59.27 11.09

Table 4.5: The total number of clusters (Nc) assigned was generally low and the

weight of the largest clusters was relatively large (16–100%).

NC wc=1 µβ0,c=1 SDβ0,c=1 µβ1,c=1 SDβ1,c=1

C0.5,low 8 0.2 0.15 0.02 0.69 0.14

C1.0,low 8 0.17 0.07 0.01 0.84 0.1

C−0.5,low 1 1.0 0.49 0.14 -0.01 0.53

C−1.0,low 4 0.42 0.93 0.03 -0.98 0.04

C0.5,high 2 0.81 0.24 0.10 0.54 0.21

C1.0,high 3 0.46 0.24 0.1 0.75 0.13

C−0.5,high 5 0.31 0.93 0.09 -0.65 0.2

C−1.0,high 5 0.39 0.9 0.08 -0.95 0.07
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4.3.3.2 Per-Participant Clusters

To evaluate if the source of the multimodality in our data was due to averag-

ing over diverse cohorts of participants, or if individual participants produced

multimodal posteriors, we performed the same clustering procedure on a per-

participant basis. Participant posterior distributions were characterized by 1–12

clusters (M = 3.11,SD = 1.96, IQR1–3 = [1,4]), suggesting that individual partic-

ipants exhibited multimodal distributions. Furthermore, some participants with

optimal R̂ (≤ 1.1) also exhibited multiple clusters, indicating that the multimodal-

ity was not simply due to poor convergence (M = 1.89,SD = 1.36,NR̂≤1.1 = 9).

The number of clusters did not differ significantly between low-variance and

high-variance conditions, Mlow = 2.98, SDlow = 1.94, Mhigh = 3.1, SDhigh = 1.57,

t(164.24) = −0.49, p > .3. Neither did the slope variance differ significantly in the

largest cluster, Mlow = 0.1, SDlow = 0.13, Mhigh = 0.1, SDhigh = 0.11, t(172.43) =

0.11, p > .5. However, for intercepts the variances of the largest clusters were

significantly different, with smaller cluster variances for low-variance conditions,

Mlow = 0.04, SDlow = 0.03, Mhigh = 0.05, SDhigh = 0.04, t(189.85) = −2.09, p <

.05.

4.4 Discussion

We found some evidence that participants represent the functions learned in train-

ing as distributions over parameters. Furthermore, the modes of these distribu-

tions were, in many cases, aligned with the true parameters. Also, for intercepts,

but not for slopes, these distributions were affected by differences in training

variability. Finally, our results suggest that the learned distributional spaces over

function parameters can exhibit multiple modes.

The multimodality in the posterior distributions allows for two interpreta-

tions. First, it is possible that participants truly evaluated distinct candidate
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representations, and thus multimodal posterior distributions characterized their

hypothesis space. It is plausible that a priori strongly favored relationships, in

addition to the implied parameters in training, constitute the psychological space

when learning sets of varying functions. Second, the multimodality might also

arise from our experimental method. One issue could be the number of iter-

ations. Theoretically, MCMCP is well suited to discover complex, multimodal

distributions, but practically many more samples could be necessary to achieve

convergence to the posterior distribution. Since vast numbers of iterations might

not be feasible from an experimental perspective, one practical test of our results

could be starting the chains of later participants at the endpoints of previous

participants (Martin et al., 2012).

Future research should clarify the source of multimodality, for instance, by

comparing our results with results obtained by multidimensional scaling (MDS).

MDS provides an alternative experimental method to obtain participants’ repre-

sentations. Unlike MCMCP, MDS uses similarity ratings between stimuli to con-

struct the internal representations. Thus, MDS results could provide additional

evidence for multimodality, based on an alternative experimental paradigm.

If such a comparison corroborates our results, these insights into the structure

of psychological spaces could, in turn, provide invaluable guidance for future gen-

eralization research. MDS would also allow us to address two shortcomings of the

current study: its exclusive focus on linear functions, and the potential influence

of perceptual similarity of functions on participants’ forced choices. First, sim-

ilarity judgments obtained via MDS could be used to determine if participants

are well-described by linear models, or if non-linear representations underlie their

judgments. These results would allow us to determine if the multimodal represen-

tations observed in our experiment were the result of a lack of satisfactory choices

or a genuine characteristic of learning. Second, MDS would allow us to chart sets

of perceptually similar samples. It is plausible that intercepts and slopes can af-
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fect notions of similarity of linear functions differently. For example, if functions

sharing the same slope but very different intercepts are judged more similar than

functions with similar slopes and intercepts, such non-linear interactions could

explain the multimodality observed in our experiment.

While more research is required, our results also highlight the importance

of a plurality of experimental approaches and methods in the study of human

generalization. Most previous research has focused on averaged errors or single

extrapolations. Here, we suggest that to fully understand human generalization,

we need to consider the interplay between errors, extrapolations, and the hypoth-

esis spaces facilitating them.



Chapter 5

Transferring Functions and

Parametrizations

Many everyday situations require us to generalize from experience, even if faced

with a specific problem we have never seen before. For example, in cooking,

one regularly has to infer the relationship between ingredients, ratios, or quan-

tities, like the amount of sweetener and resulting pleasantness of a dessert, and

generalize this relation to new recipes or ingredients. Often, we learn a general

relationship that helps us understand related problems. When we learn that

adding sugar to a dish will gradually increase its sweetness before saturating, we

acquire knowledge that we can apply to similar relationships, such as deciding

how much xylitol1 to add to a cake.

The previous chapters have explored which representations allow us to gen-

eralize based on learned relationships. Here we expand this notion to situations

in which past relationships themselves are generalized or transferred to a new

situation. These situations expand the tasks humans face in classical function

learning experiments and require further-reaching and more abstract inferences.

Given a set of prediction tasks, how can we capitalize on statistical regularities

1A widely used sugar substitute.

65
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to aid future prediction? If the tasks exhibit some shared structure, learning a

representation capturing this latent structure of the environment (Gershman and

Niv, 2010) or learning which aspects of a task change (Wilson and Niv, 2012) can

enable the learner to perform wide-ranging and data-efficient generalization.

The value of transferring knowledge across different tasks is receiving grow-

ing attention in machine learning communities. For example, abstract learning

and transfer have been successfully applied to challenging control tasks (Hamrick

et al., 2017). From a cognitive science perspective, the study of such general

learning mechanisms has a long tradition, (e.g., Harlow, 1949). Research in

this tradition has highlighted how hierarchical representations can allow for the

“blessing of abstraction” (Gershman, 2017b), where abstract knowledge is ac-

quired faster than detailed information. Several proposals have been put forward

on how hierarchical and structured inductive biases can be acquired through de-

velopment and how they allow for rapid generalization (Goodman et al., 2008;

Tenenbaum et al., 2011).

In function learning, the hierarchical and abstract representation of relation-

ships has traditionally been reduced to mechanisms that allow generalizing a

mapping from criterion to target. Here we will adopt a general perspective and

express the task as Gaussian process regression. While Gaussian processes allow

us to express inductive biases for functions in flexible, non-parametric fashion,

only recently has more attention been given to structural and hierarchical aspects

of function generalization. This work has emphasized the importance of inductive

biases over different function types (Lucas et al., 2015; Wilson et al., 2015), the

compositional structure of functions (Schulz et al., 2017), or the generalization of

functions into dimensions outside the learned space (Lucas et al., 2012).

In Wilson et al., participants repeatedly extrapolated from a non-parametric

smooth function. Participants progressively learned the features of this function

and adapted their expectations to the learned data. However, while partici-
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pants in Wilson et al. adapted their expectations, their final extrapolations were

still skewed towards prior expectations for correlational structure. Similarly, in

Reimers and Harvey (2011), participants had to forecast time series repeatedly.

Participants adapted their predictions to the correlation structure in the data

but exhibited strong inductive biases for positive autocorrelations. These results

led Reimers and Harvey (2011) to suggest that participants update their prior

expectations based on the structure in the data.

Here we expand on this line of research and propose that when humans learn

relationships, they do not maintain sets of data, parametrizations, or fixed para-

metric forms. Instead, they form flexible and abstract hypothesis spaces. Based

on this abstract encoding, they can capitalize on statistical co-occurrences of ab-

stract information about the type of relationship learned. As a result, repeated

exposure to similar functions should result in learning about the shared type of

relationship and its relevant features. Such exposure should then facilitate extrap-

olation in sparse contexts and allow far-ranging generalization. We hypothesize

that this application of past knowledge does not merely amount to remembering

previous data, but productive extrapolation depends on the adaptation of the

learned abstract function type to the context at hand.

5.1 Experiments

We ran two sets of experiments. In all experiments, participants were trained

on a set of three function realizations. They either had to select from a set of

candidate patterns the option they deemed the most consistent with this training

(Forced-Choice Experiment) or had to extrapolate (Extrapolation Experiment).

In the forced-choice experiments, we also contrasted the participants’ preferences

with a control condition in which no training was provided. We used both ex-

trapolations and choices as dependent variables, as they provide complementary



68 Chapter 5. Transferring Functions and Parametrizations

insight into participants’ inferred functions. Forced choices directly present par-

ticipants with the alternative extrapolation patterns and, at the same time, allow

us to adopt simple statistical tests to evaluate which patterns, from the limited

set of candidates, were preferred. Extrapolation tasks are more flexible, but at

the same time are more challenging to quantify, as participants tend to produce

idiosyncratic patterns.

5.1.1 Procedure

Participants were instructed to learn the relationship between two nondescript

substances, substance x and substance y. They were told that they would be

presented with three sets of patterns, each depicting one realization of the same

relationship and that they had to predict the relationship for ten new points.

They also received a visual depiction explaining how they would predict the

points. They were instructed that they would see one more pattern from the

same relationship, consisting of three points. In the control task, participants

were only instructed that they would be presented with a relationship between

the two substances. Then, they immediately proceeded to the forced-choice test

phase.

5.1.1.1 Training Phase

Each training block took the form of an extrapolation task: participants saw

scatter plots and had to guess the value of the substance on the y-axis by selecting

the height of the corresponding value on the plot. Participants were shown the

correct value as feedback for one second, and, if their choice deviated by ±2.5%2

or more of the true value, had to readjust their selection. We presented the

training data as an extrapolation task, since previous research has highlighted

that testing aids extrapolation performance (Kang et al., 2011). Training blocks
2In relation to the total range of the extrapolation area.
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were presented in randomized order.

5.1.1.2 Test Phase

After the training blocks, there was either a forced-choice task or an extrapo-

lation task. Participants saw either the three- or one-point pattern and were

instructed that this pattern belonged to the same relationship as the one in the

training phase. In the forced-choice task, they then saw six scatter plot patterns

corresponding to one conditional sample for each of the six candidate functions

in randomized order. In the extrapolation task, they instead had to perform ex-

trapolation given the pattern. In the forced-choice condition, participants had to

select the pattern that they deemed the most likely extrapolation for the learned

relationship. In the extrapolation task, participants received the same points

that generated the conditional samples in the forced-choice condition and had to

extrapolate for 30 values of x, without feedback, following the same procedure as

in the training sets. The 30 extrapolation criteria were the same as those used

to generate the forced-choices. After the test phase, participants completed a

short demographic survey, were debriefed and compensated. For screenshots of

the experimental stimuli and instructions, see Appendix D.

5.1.2 Materials

The functions in the six conditions corresponded to samples from Gaussian pro-

cesses (GPs), with three different types of kernels and mean functions, each with

two distinct parametrizations (see Table 5.1). To allow for characteristic pe-

riodic samples, we elected a “pure” cosine kernel, Cos with k(r) = σ × cos(r),

r(x,x′) = (x−x′)2

`2
q

, with an additional intercept. We generated linear samples from

a linear kernel Lin with explicit slope and intercept terms. Finally, we used an

Ornstein-Uhlenbeck kernel (OU) with an additional intercept to generate non-

smooth samples.
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Table 5.1: Kernels and kernel parameters generating the training data (variance σ,

lengthscale λ, intercept β0, and slope β1). For all models, we set the residual variance

to σ = 0.01.

σ λ β0 β1

Lin1 0.02 – 0.35 0.47

Lin2 0.02 – 0.7 -0.47

Cos1 0.05 0.1 0.5 –

Cos2 0.05 0.04 0.5 –

OU1 0.01 1 0.5 –

OU2 0.08 1 0.5 –

5.1.2.1 Training Sets

We generated the training data by sampling three sets of 35 points, each in the

range 0.05–0.95 for each of the six conditions. The first 25 points constituted the

evidence provided in each training set. Participants had to extrapolate the target

value for the last 10 points and received feedback for their choices. To ensure that

samples were perceptible and the samples were distinct (within function type and

between function types), we generated a set of 20 candidate patterns for the 18

sets. We then selected samples from these candidates for which all points were

in the presentation range [0,1], which were ≥ 0.05 of the three transfer points.

Finally, we also rejected visually uncharacteristic samples3. For a full list of

kernels and kernel parametrizations, see Table 5.1; for the training data and the

conditional samples, see Figure 5.1.

3For example, samples from the OU kernel that did not exhibit any discontinuities and were
visually identical to linear relationships, or cos samples that had very low amplitudes.
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(a) Positive linear function (b) Slow periodic function (c) Low-variance OU

(d) Negative linear function (e) Fast periodic function (f) High-variance OU

Figure 5.1: Training data in the six conditions. For each condition, there were three

sets of points to be learned. Participants received the first 25 points and had to

extrapolate for the ten remaining points. The dashed line is the cutoff between

presented evidence and training.
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5.1.2.2 Transfer Set

In the transfer set, either three points, x = {0.05,0.1,0.2}, y = {0.475,0.525,0.5},

or one point, x = {0.2}, y = {0.5} were presented. These points were selected

not to be strongly reflective of the training materials, in terms of specific point

locations. We then generated three samples conditional on the transfer points

for each of the six functions. Participants received one of these three samples

at random for each of the six kernels in the forced-choice task. For the samples

presented in the 3-point and 1-point forced-choice conditions, see Figure 5.2.

(a) Lin1 −3 (b) Lin2 −3 (c) Lin1 −1 (d) Lin2 −1

(e) Cos1 −3 (f) Cos2 −3 (g) Cos1 −1 (h) Cos2 −1

(i) OU1 −3 (j) OU2 −3 (k) OU1 −1 (l) OU2 −1

Figure 5.2: The materials presented in the 3-point and 1-point forced-choice experi-

ments, as well as the control conditions.
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5.1.3 Participants

5.1.3.1 Forced-Choice Experiments

We recruited a total of 291 participants (Mage = 33.58,SDage = 10.82; 109 female,

181 male, 1 other) on Amazon Mechanical Turk. Participants had to have com-

pleted more than 50 approved tasks with an approval rate of 95% or higher.

In total, 191 participants completed the experimental conditions (Npoint=1 =

92,Npoint=3 = 99) and 100 the control conditions (Npoint=1 = Npoint=3 = 50). Par-

ticipants in the experimental conditions received $0.55 for participation and took

an average of 8 minutes (M = 7.56, SD = 7.08) to complete the experiment. Par-

ticipants were randomly assigned to one of the six experimental conditions; for

the resulting group sizes, see Table 5.2. In the control conditions, participants

received $0.20 for participation and took an average of 1.5 minutes (M = 1.5,

SD = 6.30) to complete the experiment.

5.1.3.2 Extrapolation Experiments

We recruited a total of 184 participants (Mage = 32.58, SDage = 9.68; 74 female,

110 male) on Amazon Mechanical Turk. Participants had to have completed more

than 50 approved tasks with an approval rate of 95% or higher. Participants

received $0.65 for participation and took an average of 9 minutes (M = 9.37,

SD = 8.46) to complete the experiment. Participants were randomly assigned to

one of the six experimental conditions; for the resulting group sizes, see Table 5.2.

5.2 Results

5.2.1 Training Errors

We aggregated the training errors across forced-choice and extrapolation exper-

iments, since participants were presented with the same training task for both
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Table 5.2: Total number of participants in the forced-choice (Nchoice) and extrapo-

lation (Nextrap) conditions.

Points Nchoice Nextrap

Lin1 1 16 16

Lin1 3 16 15

Lin2 1 16 16

Lin2 3 17 16

OU1 1 15 15

OU1 3 17 16

OU2 1 15 15

OU2 3 16 14

Cos1 1 15 15

Cos1 3 17 15

Cos2 1 15 16

Cos2 3 16 15
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conditions.

Mean absolute errors calculated on extrapolations before the participant had

received feedback for that particular value differed considerably depending on

the type of function presented in training. As expected, errors were lowest for

linear conditions (MLin1 = 0.02, SDLin1 = 0.01; MLin2 = 0.02, SDLin2 = 0.02). The

low-variance OU and the slow periodic condition also exhibited low mean errors

(MOU1 = 0.03, SDOU1 = 0.01; MCos1 = 0.03, SDCos1 = 0.03). High-variance OU

and fast periodic conditions exhibited the highest training errors, (MOU2 = 0.08,

SDOU2 = 0.03; MCos2 = 0.08, SDCos2 = 0.05). For error quantiles per condition,

see Figure 5.3.
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Figure 5.3: Averaged errors across the three training blocks. Errors were generally

low and displayed low variability. However, for high-variance OU and the fast periodic

function, errors were considerably higher and displayed larger variability. Boxplots

display first, second (median) and third quartiles. Whiskers show the 1–5 interquartile

range (IQR).
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5.2.1.1 Error Decay

We can also assess the change in training error over the three training blocks.

Note that in contrast to previous research, participants in our experiments did

not see the same realization of a function. Instead, changes in error over the

training blocks reflect the influence of an expectation for a particular type of

function.
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Figure 5.4: Mean absolute error across training blocks and conditions. Error bars

display 95% bootstrapped confidence intervals. While both linear, low-variance OU

and slow periodic functions were easy to learn, the fast periodic function and the

high-variance OU conditions were not. While participants in the fast periodic condi-

tion improved somewhat over training, on average, participants in the high-variance

condition did not decrease their training errors.

Previous work has modeled the error decay during training with a hierarchical
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exponential-decay model (Kalish, 2013). We evaluated a variety of candidate

models, including the exponential-decay model, and found that a hierarchical

log-normal, log(error) ∼ N (µ,σ) model fit the data best.

As in Kalish (2013), our model is a hierarchical Bayesian model, with per-

participant (s) variation in slopes and intercept µ = β0s + block × β1s. Partic-

ipants’ intercepts and slopes were drawn from two normal distributions, βs ∼

Nc(µc,1), pooled within their corresponding experimental condition c, with µc ∼

N (0,10). For simplicity, per-participant variance was fixed (σs = 1) and over-

all error variance was shared, σ ∼ Cauchy+(5). For details of the model and

the parameter estimation, as well as comparison to alternative models, see Ap-

pendix D.2.

We obtained group-level intercepts β0c and learning rates β1c. Since we model

error on the logarithmic scale, we transformed intercepts and slopes for interpreta-

tion, β0 = eβ0 , β1 = eβ1 −1. Note that the slopes obtained amount to a percentage

change in relation to unit changes in each block. Group-level intercepts for both

linear conditions, the low-variance OU, and the slow periodic were generally low,

and error decayed across blocks at about 12%. In contrast, for high-variance OU,

initial errors were higher and did not change over training (β0 = 0.08, β1 = 0.01).

Similar to high-variance OU, initial errors for fast periodic functions were high

(β0 = 0.08). However, these errors decreased significantly over training blocks at

a rate of about 13%. For errors across the three training blocks, see Figure 5.4;

for group-level intercepts and slopes estimated by our model, see Figure 5.5; for

estimated parameters and highest posterior density intervals, see Table 5.3.

5.2.2 Choices

Overall, in the forced-choice experimental conditions, about 46% of the partic-

ipants selected the correct function type and parametrization (88 out of 192)

after training. In the 3-point experiment, approximately 35% chose the correct
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Figure 5.5: Group-level estimates of error intercepts and slopes estimated via the

hierarchical Bayesian lognormal model. Both the high-variance OU condition and

the fast periodic condition exhibit large initial errors in contrast to the remaining

conditions. While the error for the fast periodic condition decreases over blocks, the

error for the high-variance OU remains high.
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Table 5.3: Group-level estimated means M̂ for intercepts, β0, and slopes, β0, as well

as 95% highest-posterior density intervals estimated via MCMC for the exponential

decay model.

M̂β0 HPD95β0 M̂β1 HPD95β1

Lin1 0.02 [0.02, 0.02] -0.12 [-0.34, 0.10]

Lin2 0.02 [0.02, 0.02] -0.12 [-0.34, 0.10]

OU1 0.03 [0.02, 0.04] -0.14 [-0.35, 0.08]

OU2 0.08 [0.06, 0.10] 0.01 [-0.23, 0.29]

Cos1 0.03 [0.02, 0.04] -0.11 [-0.32, 0.12]

Cos2 0.08 [0.06, 0.10] -0.13 [-0.33, 0.11]

function and parametrization (35 out of 99).

In the 1-point condition, the proportion was higher, with approximately 57%

of the participants selecting the correct function type and parametrization (53 out

of 93). In the absence of training, in the 1-point condition participants preferred

periodic functions (Cos2 30%, 15 out of 50; Cos1 28%, 14 out of 50) over OU (OU1

18%, 9 out of 50; OU2 14%, 7 out of 50). Only 10% of the participants selected the

positive linear function (5 out of 50). The strong preference for periodic patterns

suggest that participants interpreted the three points generating the sample to

correspond to noiseless realizations of a low-amplitude periodic function, and not

as intended noisy realizations of a flat linear function.

In contrast, in the 3-point control condition, 30% of the participants preferred

positive linear functions (15 out of 50). They selected slow periodic functions in

24% cases (12 out of 50), and negative linear functions in 18% (9 out of 50).

Low-variance OU and fast periodic functions were chosen in 12% (6 out of 50)

and high-variance OU in 4% (2 out of 50).

The proportion of choice and the preference for particular functions differed
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considerably across training function types and parametrizations. We fitted

Dirichlet-Multinomial models to each condition to estimate the proportion of

choices and contrast it with control preferences in both 3-point- and 1-point con-

ditions. We contrasted the inferred true-option proportions with chance-level

(1/6) and the corresponding proportions in the control condition. For more de-

tails on the model and the estimation procedure, see Appendix D.3.

5.2.2.1 3-Point Choices

In the linear conditions, participants preferred linear functions (Lin1 69%, 11 out

of 16; Lin2 59%, 10 out of 17) and the correct parametrization specifically (Lin1

44%, 7 out of 16; Lin2 53%, 9 out of 17). In both conditions, they also chose

low-variance OU, albeit at considerably lower rates (Lin1 25%, 4 out of 16; Lin2

24%, 4 out of 17).

In contrast, in the OU and periodic conditions, participants were not as ho-

mogeneous in their preferences. In the OU conditions, participants did select OU

at slightly higher rates than alternatives (OU1 47%, 8 out of 17; OU2 56%, 9 out

of 16) and selected periodic functions at similarly high rates (OU1 41%, 7 out of

17; OU2 38%, 6 out of 16). Participants preferred the correct parametrization

in the high-variance OU condition (38%, 6 out of 16). They selected it over the

low-variance alternative (19%, 3 out of 16), as well as both periodic options (each

19%, 3 out of 16). However, in the low-variance condition, participants predom-

inantly selected the high-variance OUs and the slow periodic options (both 29%,

5 out of 17) over the low-variance option (17%, 3 out of 17).

For periodic conditions, periodic options were selected at higher rates than

alternatives (Cos1 59%, 10 out of 17; Cos2 75%, 12 out of 16). For fast periodic

functions, participants chose the correct parametrization in 50% of the cases (8

out of 16). They selected the slow alternative at lower rates (25%, 4 out of 16).

To confirm that the preferences for the option corresponding to the true func-
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tion differed significantly from chance, we contrasted the proportion estimates of

the Dirichlet-Multinomial model with random choice (1/6) and the control condi-

tion. For both linear conditions and the high-variance OU and the fast periodic,

estimated proportions were considerably higher than chance, with ≥ 95% of the

estimated proportions larger than 1/6. Of those, all but Lin1 were also larger

than the proportion corresponding to the true choice proportion in the control

condition (≥ 99%). Only 50% of the estimates in the low-variance OU condition

and 26% of the proportion estimates in the low-frequency periodic were higher

than chance. When compared to the proportions obtained in the control con-

dition, about 72% of the proportion estimates for Lin1 and OU1 were higher.

Finally, less than 7% of the estimates in the low-frequency periodic condition

were higher than the proportion in the control condition.

For the full set of posterior estimates, see Figure 5.7, and Table D.3; for

proportions, see Figure 5.6.

5.2.2.2 1-Point Choices

In the 1-point linear conditions, participants preferred linear functions (Lin1 69%,

11 out of 16; Lin2 88%, 14 out of 16) and the specific parametrization (Lin1 69%,

11 out of 16; Lin2 69%, 11 out of 16). In contrast to the 3-point condition, they

chose alternatives at much lower rates.

Similarly, for OU conditions, participants preferred OU-type functions (OU1

80%, 12 out of 15; OU2 50%, 8 out of 16). As in the 3-point condition, participants

in the low-variance condition did not prefer the true OU parametrization (OU1

40%, 6 out of 16) and chose high-variance OU equally often (6 out of 16, 40%).

In contrast to the 3-point condition, they did not select low-frequency periodic

options (7%, 1 out of 15) nor the other options frequently. In the high-variance

OU condition, participants preferred the true parametrization (OU2 44%, 7 out

of 16) and less frequently chose high-frequency periodic options (25%, 4 out of
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Figure 5.6: Proportions for each choice in the six experimental conditions. Partici-

pants preferred high-frequency periodic samples over the true low-frequency samples.

Similarly, participants in the OU1 conditions preferred the high-variance samples, or

even periodic samples, over the low-variance samples they saw in training.



5.2. Results 83

0.00

0.25

0.50

0.75

Ch
an

ce

Lin1

Experiment
Control

Lin2

0.00

0.25

0.50

0.75
OU1 OU2

Lin1 Lin2 OU1 OU2 Cos1 Cos2

0.00

0.25

0.50

0.75
Cos1

Lin1 Lin2 OU1 OU2 Cos1 Cos2

Cos2

Figure 5.7: Proportion of options chosen in the six experimental conditions (round

marks) and control (square marks) for the 3-point conditions. The trained function

type and its specific parametrization were selected at rates higher than chance (1/6).

Proportion estimates for the options selected in the experimental conditions (round

marks with 5–95% IQR) revealed that for the low-variance OU and the low-frequency

periodic condition, participants did not prefer the true function at rates higher than

the control condition. Instead, they preferred the alternative parametrization corre-

sponding to the same function type.
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16).

In the periodic conditions, participants preferred the true function types (Cos1

12 out of 15, 80%, Cos2 11 out of 15, 73%). In both conditions, they mainly

selected the trained parametrization (Cos1 67%, 10 out of 15; Cos2 53%, 8 out of

15).

We again compared the models’ estimated proportions to chance and the

proportion in the control condition. The trained option was selected above chance

in all conditions (95% of the estimated proportions in all conditions ≥ 1/6).

Furthermore, in all conditions, the estimated parameters were also higher than the

control condition (95% ≥ control). For the full set of proportions, see Figure 5.8.

For mean estimates and 95% highest posterior density intervals, see Figure 5.9,

and Table D.4.

5.2.3 Extrapolations

Visual inspection of the extrapolations in both 3-point and 1-point conditions

strongly suggested that the extrapolations reflected participants’ training condi-

tions. Slopes in the positive linear conditions were visually distinct from negative-

slope Linear. These slopes suggested that participants extrapolated positively

in the positive-slope condition and negatively in the negative-slope condition.

Similarly, variance was visually higher in the high-variance OU conditions when

contrasted with low-variance OU. Finally, periodic extrapolations in the fast con-

ditions were visually suggestive of a higher frequency than the slow, low-frequency

periodic conditions. For all extrapolations, see Figure 5.10.

5.2.3.1 Recovering Function Types from Extrapolations

To evaluate if these patterns were also well aligned with the generating models,

and if samples reflected the differences in function parametrization, we performed

maximum-likelihood estimation (MLE) for each participant and each generating
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Figure 5.8: Proportions for each choice in the six 1-point experimental conditions.

As in the 3-point condition, the trained option was selected above chance in all

conditions. However, while both low-variance OU and fast periodic were selected

more often than control, and at higher rates than in the 3-point condition, high-

variance OU was chosen equally as often as low-variance OU.
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Figure 5.9: Proportion of options chosen in the six experimental conditions (round

marks) and control (square marks) for the 1-point conditions. The trained function

type and its specific parametrization was selected at rates higher than chance (1/6) in

all conditions. Proportion estimates for the options selected in the experimental con-

ditions (round marks with 5–95% IQR). For low-variance OU however, high-variance

OU options were selected at equally high rates.
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Figure 5.10: Extrapolations closely matched the learned function types, as well as

concrete parametrizations.

GP4. That is, we fitted the three types of Gaussian process models to each partic-

ipants’ extrapolations. We then used the type of generating GP with the highest

likelihood to predict which training samples the participant had received. This

approach allowed us to evaluate if the experimental manipulation resulted in ex-

trapolation patterns consistent with the generating GPs. Finally, we contrast the

fitted parameters between conditions to assess if the extrapolations also reflect

characteristic differences between the training conditions. For the five best-fitting

extrapolations in each condition, see Figure 5.11.
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Figure 5.11: The five extrapolations with the highest likelihood scores in each condi-

tion.

Our classification procedure classified 8 out of 15 (53%) participants correctly
4We imposed range constraints for periodic and OU lengthscales ∈ [0.001,0.2] to aid the

estimation and ran 50 L-BFGS optimization restarts.
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in positive linear conditions, a proportion that was not significantly larger than

expected by chance (1/3), pLin1 = .095. In negative linear conditions, 8 out of

16 (50%) participants were classified correctly, a proportion that was not signif-

icantly larger than chance, pLin2 = .13. For OU, low-variance OU was classified

correctly 10 out of 16 times (62%), pOU1 = .02, and high-variance OU was clas-

sified correctly 12 out of 14 times (86%), pOU2 < .001. Low frequency periodic

functions were classified correctly 9 out of 15 times (60%), pCos1 = .03. Fast peri-

odic functions were classified correctly 10 out of 15 times (67%), pCos2 = .01. For

a confusion matrix of the classification, see Figure 5.12.
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Figure 5.12: GP MLE s for each participant were used to predict which training

samples the participant had been assigned to. This method was able to recover the

training conditions.

For 1-point extrapolations, our classification scheme classified 12 out of 16

participants correctly in the positive linear condition (75 %), pLin1 < .001. For

negative linear, only 9 out of 16 (56%) participants were correctly classified, a

proportion that was only slightly larger than chance, pLin2 = .05. For both low-

and high-variance OU conditions our scheme classified 8 out of 15 participants
5All tests are one-sided, exact Binomial tests.
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(53%) correctly, pOU1 = pOU2 = .09. For low- frequency periodic functions, 9 out

of 15 participants (60%) were classified correctly, pCos1 = .03. For fast periodic

functions, 12 out of 16 participants (75%) were classified correctly, pCos2 < .001.

For a confusion matrix of the classification for 3-point extrapolations, see Fig-

ure 5.13.
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Figure 5.13: For 1-point extrapolations, MLE s were only able to recover the major-

ity of participants in the linear and periodic conditions. Extrapolations in the OU

conditions could not clearly be distinguished from those in periodic conditions.

5.2.3.2 Recovering Function Parameters from Extrapolations

To evaluated if the parameters of the best fitting model for each training function

captured condition-specific parameter differences, we contrasted the parameters

obtained via MLE for the true model. In the 3-point linear conditions, MLE-

estimated parameters for slopes differed significantly between conditions, MLin1 =

0.2, SDLin1 = 0.25, MLin2 = −0.1, SDLin2 = 0.34, t(27.49) = 2.82, p = .016, with

the signs of the inferred slopes matching the training. Neither intercept, variance

or noise estimates differed significantly between conditions (all p > .1).
6All tests in this section are unequal variance, two-sided t-tests.
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The inferred parameters for variance in the OU conditions did not differ sig-

nificantly, but were reflective of differences in training, MOU1 < 0.01, SDOU1 <

0.01; MOU2 = 0.01, SDOU2 < 0.01; t(15) = −1.95, p = .07. The inferred length-

scale did not differ significantly between conditions, but was slightly higher for

OU1, MOU1 = 0.38, SDOU1 = 0.39; MOU2 = 0.21, SDOU2 = 0.28; t(26.31) = 1.46,

p = .16. Both intercept and noise estimates did not differ significantly between

conditions (all p > .5).

The inferred parameters for periodic conditions did not differ significantly for

lengthscale, MCos1 = 0.08, SDCos1 = 0.06; MCos2 = 0.08, SDCos2 = 0.1; t(22.47) =

0.27, p = .79. Instead, conditions differed significantly for variance, MCos1 = 0.02,

SDCos1 = 0.02; MCos2 = 0.01, SDCos2 = 0.01; t(20.1) = 2.25, p = .04. Estimates

for intercepts and noise were not significantly different between conditions (all

p > .1).

The parameters for linear slopes in the 1-point condition again differed signif-

icantly between conditions, MLin1 = 0.29, SDLin1 = 0.18; MLin2 = −0.2, SDLin2 =

0.22; t(28.94) = 7.09, p < .001. In contrast to the 3-point conditions, inter-

cepts did also differ significantly, MLin1 = 0.19, SDLin1 = 0.04; MLin2 = 0.3,

SDLin2 = 0.04; t(29.81) = −6.7, p < .001. However, variance did not differ signif-

icantly, MLin1 = MLin2 < 0.001, SDLin1 = SDLin2 < 0.01, t(29.79) = 0.34,p = .74.

For parameter estimates for 3- and 1-point conditions, see Figure 5.14.

MLE estimates for OU in the 1-point conditions did not differ significantly.

While noise was higher for high-variance conditions, MOU1 < 0.001, SDOU1 <

0.01; MOU2 = 0.001, SDOU2 < 0.01, this difference was not significant, t(14.02) =

−1.4, p = .18. For parameter estimates for 3- and 1-point OU conditions, see

Figure 5.15.

Similarly, neither estimated intercepts, MOU1 = 0.52, SDOU1 = 0.04; MOU2 =

0.47, SDOU2 = 0.12; t(16.82) = 1.6, p = .13, nor lengthscales, MOU1 = 0.11,

SDOU1 = 0.08; MOU2 = 0.13, SDOU2 = 0.07; t(27.75) = −0.49, p = .63, differed
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Figure 5.14: MLE estimates for the linear GP model for extrapolations in the linear

1- and 3-point conditions. Overall, the estimated parameters reflected the difference

in slopes and intercepts in the training materials.
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Figure 5.15: MLE estimates for the GP model for extrapolations in the OU 1- and

3-point conditions. The estimated parameters could not accurately distinguish the

two experimental conditions.
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significantly.

For periodic functions, there were again no significant differences between con-

ditions. While lengthscales were slightly higher for Cos1, MCos1 = 0.85, SDCos1 =

0.05; MCos2 = 0.6, SDCos2 = 0.06, this difference was not significant, t(28.38) =

1.18, p = .25. Similarly, neither variances, MCos1 = 0.02, SDCos1 = 0.01; MCos2 =

0.01, SDCos2 = 0.01; t(28.87) = 0.54, p = .59, nor lengthscales, MCos1 = 0.08,

SDCos1 = 0.05; MCos2 = 0.06, SDCos2 = 0.06; t(28.38) = 1.18, p = .25, differed

significantly. For parameter estimates for 3- and 1-point periodic conditions, see

Figure 5.16.

0.0 0.2
Lengthscale

0

10

Tr
ue

Co
s 1

Tr
ue

Co
s 2

0.00 0.05
Variance

0

10

0.00 0.01
Noise

0

20

Figure 5.16: MLE estimates for the periodic GP model for extrapolations in the

Cos 1-point and 3-point conditions. Only in the 3-point conditions did parameter

estimates accurately reflect differences in conditions.

5.3 Discussion

Training difficulty reproduced previous results in function learning, with positive

linear functions being easy to learn and non-monotonic and random-patterns

being more challenging. However, our results also highlight that this difficulty

is graded, with low-variance OU and low-frequency periodic functions exhibiting

lower errors than their counterparts. These results suggest that differences in the

ability to learn particular functions rest not only on the general functional form

but also on the parametrization of those functions.



5.3. Discussion 93

While our results regarding training difficulty expand previous notions of

learning difficulty, the main contribution of this chapter is in the analysis of the

choices and extrapolations after training. In general, we found that participants

choose patterns and extrapolated in ways consistent with the learned function

type. Across both 3- and 1-point conditions, participants selected the correct

function type well above chance. These type-specific differences were also re-

flected in the transfer sets, where extrapolations reflected relevant features, such

as trends, periodicity, or variance.

While participants’ judgments generally reflected the functions they learned

during training, our results also highlight inherent human biases. Most notably,

in the 3-point choice condition, participants preferred fast periodic samples over

the true low-frequency samples. Similarly, participants in the Ou1 conditions

preferred the higher variance samples, or even periodic samples, over the trained

low-variance samples. In the 1-point choices, these biases were slightly less pro-

nounced, but participants still chose high-variance OU at an equal rate as low-

variance OU options. One explanation for these biases could be that people have a

strong preference for particular functions because these parametrizations are well

adapted to environmental regularities. As a result, these functions would be ro-

bust and applicable to a wide range of tasks in the environment. This explanation

would be consistent with recent results in human exploration, where participants

tended to undergeneralize spatial correlations. However, this undergeneralization

resulted in comparable or even better performance than a ground-truth matching

model (Wu et al., 2018).

Visually, extrapolations reflected the functional type and the corresponding

parametrization of the training. However, recovering the experimental conditions

based on model comparison proved challenging and was only entirely successful

in the 3-point condition. For 1-point extrapolations, our models were not able to

differentiate the OU and periodic extrapolations. One possible explanation for
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this difficulty could be that participants struggled to express the randomness of

the OU conditions, and their extrapolations often exhibited periodicity. Similarly,

small errors or drifts in the periodicity would have proven difficult to capture

for our simple periodic model. Thus, comparing the inferred parametrizations

between function-types was limited by the general difficulty to capture the highly

variable and complex functional forms. Nevertheless, parameter estimates, while

highly dispersed, overall reflected differences in conditions.

We take our results to suggest that when humans learn consistent sets of rela-

tionships, they can learn the abstract structure or type of a family of relationships,

and exploit that knowledge to improve their ability to learn and generalize in the

future, especially in the face of sparse or ambiguous data. Participants were able

to apply this learned regularity to perform rapid and flexible generalization based

on the shared abstract relations in the training data.

Future research should more closely examine which statistical patterns can be

generalized and under which circumstances these generalizations are performed.

For example, while our experiment imposed that all patterns followed the same

relationship, in reality, this information is rarely available. Thus, future research

should examine under which circumstances task regularities are inferred to be

similar, and what kinds of notions of similarity can guide these generalizations.

A second question relates to the space of functions people can infer. Previous

research has treated this space as a closed set of flexible hypotheses. However,

these approaches have to continually revise and expand the set of hypotheses

with ad-hoc alternatives. One exciting alternative prospect is to link notions

of hierarchical and compositional representations to function generalization. If

people can combine hypotheses to form complex functions, this would alleviate

the need to include all potentially relevant functions into the hypothesis space.

We will explore compositionality in function learning in the next two chapters.



Chapter 6

Generalizing Function Compositions

In the previous chapters, we have shown that function learning operates in highly

structured and abstract hypothesis spaces. These spaces over functional forms

provide reusable and generative models that can be rapidly adapted to new sit-

uations. So far, the structure of these hypothesis spaces has been flat – people

might learn how to weigh their prior expectations about what kind of functions to

apply, but the general structure of the space remains unchanged. Here, we exam-

ine this assumption in more detail and evaluate if people can perceive continuous

relationships as compositions of simpler constituents, and if this knowledge can

be used productively.

Function extrapolation amounts to inferring the underlying generative pro-

cess producing the data, and using that process to predict new values. If these

functions are drawn from a space of alternative functions — a hypothesis space

— there are two levels at which people can learn: individual function parameters

and prior expectations for function types.

First, people can learn the parameters of individual functions. For example,

when repeatedly encountering moderately steep linear relationships, one might

update prior expectations for linear relationships to reflect the steepness. Compu-

tational models that do not consider a hypothesis space of alternatives are limited

95
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to this level of parameter learning, as they cannot distinguish learning about one

type of function from learning about other types of functions. That is because

these models adopt a one-size-fits-all mechanism to function learning, and thus

all forms of extrapolations are performed by the same mechanism. Consider, for

example, one of the most prominent function learning models, EXAM (McDaniel

and Busemeyer, 2005). EXAM proposes that associative weights are learned for

trained value pairs. If values outside of this range have to be predicted, EXAM

extrapolates linearly given the closest known value, successfully capturing human

data (McDaniel and Busemeyer, 2005). However, the model has no mechanism

to store the learned weights and parameters. Thus, if a different pattern is en-

countered, the model must be retrained, and no previous information can be

maintained.

Second, people can learn to weigh prior expectations about the functions.

For instance, repeatedly encountering cyclic patterns could result in updating

one’s prior expectation of these relationships. Computational models, such as

the (theoretical) model of Brehmer (1974) or the more recent models by Lucas

et al. (2015), allow for this kind of learning.

While both types of learning would allow one to adapt their expectations

about the types and shapes of functions in the world, in both cases, learning

is domain-general. For example, if one learns that atmospheric measurements

often exhibit seasonal patterns, updating one’s beliefs about seasonality would

influence one’s expectations about all other relationships. The results of Chapters

3 and 5 suggest that people do not learn functions in domain-general ways, but

in domain-specific ways. Introducing a higher-order structure to the hypothesis

space would allow people to form expectations about functions in domain-specific

ways. These beliefs abstract the current task and allow the agent to learn high-

order generalizations, or overhypotheses (Goodman, 1983; Kemp et al., 2007).

Overhypotheses amount to hypotheses over hypotheses; beliefs about what
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kinds of structures are plausible in a particular context or task. In turn, acquiring

these expectations over alternative hypotheses enables the learner to effectively

generalize to novel situations, as the space of plausible hypotheses, an in-principle

infinite space, is heavily constrained. Overhypotheses allow children and adults to

learn effectively and underpin the human ability to form complex structures like

biological taxonomies, physical or psychological theories, and causal inferences

(Gopnik and Wellman, 2012; Kemp et al., 2007; Lucas and Griffiths, 2010).

While the notion of a hypothesis space and its extension to domain-specific hy-

pothesis spaces allows for flexible learning, these approaches cannot satisfactorily

answer how people can infer a wide range of functions. For instance, experiments

by Wilson et al. (2015) showed that people could learn unconventional functions,

such as saw-like patterns. These functions would have to be included a priori in

the hypothesis space, in addition to the many other functions that experiments

have found people can learn and infer. Furthermore, many common patterns ex-

hibit even more complex patterns. For example, the atmospheric measurements

mentioned earlier do often exhibit seasonality and additional features, such as

trends, changepoints, or further smooth or rugged variation. Treating the hy-

pothesis space as a set of a priori available functions would thus have to include

all of these combinations and variations, as parts of the space.

One solution to this issue is to suggest that the space of candidate function is

not structured as a weighted set of hypotheses but is a generative compositional

process. This process would take a set of atomic functions and compositional op-

erators to produce atomic or composed functions as a hypothesis. Two potential

compositional operators in function learning are the addition or multiplication of

simpler functions, but more sophisticated operations would be possible.

Compositionality is the idea that complex structures can result from the com-

bination of simple elements. Compositionality has been discussed most notably

in linguistics and is the fundamental principle of syntax. In language, composi-
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tionality is the mechanism by which a finite set of words can produce an infinite

variety of sentences (Chomsky and Halle, 1965). Similarly, when interpreting

other agents’ behaviors, we naturally decompose them into goals, motivations,

and beliefs (Jara-Ettinger et al., 2016), and classes of objects are decomposed

into parts and functions (Kemp, 2012; Dechter et al., 2013; Lake et al., 2012).

Compositionality is a crucial ingredient of intelligence — it allows productive and

adaptive behavior. If phenomena in the world have compositional structure, it

is advantageous for a rational agent to detect and adopt compositional repre-

sentations, as previous experiences can be productively reused and recombined

(Griffiths et al., 2009; Griffiths, 2017; Ullman et al., 2016).

As a motivating example, imagine trying to book accommodation ahead of a

conference in an expensive city. To predict changes in rental prices as the confer-

ence approaches, one has to be able to generalize from past experiences and infer

a mapping between the proximity of the conference date and the price. However,

we cannot only use previous experiences about how time and price relate, but

we can also decompose the inferred function into constituents. For example, we

know that the prices fluctuate according to common temporal patterns; prices

typically increase as the conference date approaches. Moreover, there might be

changes from day to day such that it could be more expensive to book a place on

a Sunday than on a Tuesday when most people are at work. Knowledge about

which patterns combine and how quantities relate can aid flexible generalization.

For example, if we assume that weekday prices and proximity of the date influ-

ence price additively, we can infer that the Sunday before the conference should

be particularly pricey. Moreover, jointly learning relationships and the composi-

tional rules underlying them allows us to make a wide variety of predictions about

new patterns. For example, if we expect declining prices and daily fluctuations,

we can infer what their composition will look like and predict accordingly.

Compositionality has not received much attention in previous function-learning
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research, with notable exceptions of models that suggested that inferred func-

tions were composed of local linear functions (Kalish et al., 2004), or hybrids

of parametric and non-parametric processes (DeLosh et al., 1997). These ap-

proaches were compositional in that the learned functions were decomposed into

local (linear) experts, or into different extrapolation processes responsible for

interpolation and extrapolation. More recently, one paper explored the human

ability to infer compositional structure in functions. Schulz et al. (2017) showed

that participants generally preferred and extrapolated in ways that were better

accounted for by compositional (Duvenaud et al., 2013) than non-compositional

models (Wilson and Niv, 2012). Here we expand on that work, exploring if people

can detect compositional structure in patterns and if the rules underlying these

compositions themselves can be flexibly generalized to new situations.

We hypothesize that people see compositional structure in patterns and, given

that they perceive compositional structure, they can perceive structural similar-

ity between several patterns. For instance, if people perceive several complex

patterns as governed by a linear trend and an additive seasonal pattern, they can

infer this structure to be relevant to the class of patterns. As a result, they might

assume that novel relationships belonging to the same pattern will also exhibit

seasonality, a trend, and will compose additively.

6.1 Overview of the Experiments

Our setup is a rule-inference task in which the composition of patterns in a train-

ing set has to be applied to the two new instances in the test set, similar to

studies typically conducted in compositional rule-learning domains (e.g., Pianta-

dosi et al., 2016). We will call a successful generalization of the rule one-shot

generalization since only one rule-application is presented in the training set.

Our definition of one-shot learning is thus slightly different from the common
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use in machine learning, where the term usually refers to the number of training

instances presented (e.g., one category instance; Lake et al., 2015).

In Experiments 1-3, participants were first shown two patterns generated by

sampling from two distinct GPs. Using GPs to generate the materials is well-

suited to produce function compositions, as additions and multiplications of GPs

result in valid GPs (see Appendix A), and these compositions are intuitively

interpretable. Samples were introduced as the sales patterns over time for a

particular alien plant on the intergalactic market. Then, participants were told

that by combining the two plants, an offspring plant could be produced, and a

pattern corresponding to the sales of that offspring was shown. The offspring

corresponded to the additive or multiplicative combination of the two GPs pro-

ducing the parent patterns. These three patterns constituted the learning set,

and the composition applied to the patterns was the training-set composition

(addition or multiplication). Then two new patterns comprising the test set were

presented. Participants then had to infer what kind of sales pattern the combina-

tion of the two patterns in the test set would produce. We presented participants

with a set of four candidate sales patterns: one pattern corresponding to applying

the same composition as the training set to the two test-set patterns (the true

function), a pattern generated by applying the same training-set composition to

the test set (the alternative function), and two patterns corresponding to samples

from the test set constituents. For screenshots of the experimental stimuli and

instructions, see Appendix E.

6.1.1 Generating Functions

The sales patterns were functions sampled from a GP, with a mean of zero, and

the kernel was sampled from the set of base kernels or an additive or multi-

plicative composition of two base kernels. The base kernels used in Experiments

1 and 2 were the radial basis function (RBF) kernel that produces smoothly
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Figure 6.1: In the first three experiments, we presented sales patterns from two

plants (plants A and B) and the sales pattern generated by their offspring. In this

example, the patterns for plant A and B were sampled from GPs with OU and linear

kernels. The offspring pattern was sampled from a GP with an OU+Linear kernel.

After participants saw the three patterns in the training set, they were presented with

patterns from two more plants (plants C and D) and had to infer the pattern of their

offspring. In this example, the sales pattern for plant C was generated from an RBF

kernel, and a linear kernel generated the pattern for plant D. If participants generalize

the way plants combined in the training set to the test set, the offspring of plants C

and D should resemble a sample from a GP with an RBF+Linear kernel.

varying patterns, the linear kernel, k(x,x′) = σ2(x − c) × (x′ − c) that produces

linear functions, and a periodic kernel that produces smooth, periodic patterns,

k(x,x′) = σ2 exp
(

−2sin2(πx−x′×p)
λ2

)
. In Experiments 3 and 4, the RBF kernel

was replaced with an OU kernel. OU samples resemble rugged, random-walk-

type patterns, k(x,x′) = σ2 exp
(
−x−x′

2λ2

)
1. All kernels had a variance σ2 of 1

and kernel-specific parameters were set such as to produce discernible patterns

(RBFλ = 0.1, Periodicp = 1, Periodicλ = 2, Linearc = 2, OUλ = 3). For samples

of the kernels and their compositions, see Figures 6.2 and 6.11.

1While the RBF kernel is infinitely differentiable, and therefore smooth, the OU kernel is
non-differentiable and thus rugged.
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(a) Linear+Cos (b) Linear+RBF (c) RBF+Cos

(d) Linear×Cos (e) Linear×RBF (f) RBF×Cos

Figure 6.2: Samples resulting from adding a linear and a periodic kernel exhibit a

linear trend with periodicity. Adding a periodic to a RBF kernel adds periodicity to

smooth functions, whereas adding a linear to a RBF kernel leads to smooth functions

with a linear trend. Linear × Periodic leads to periodicity with increasing amplitude,

whereas RBF× periodic generates samples that are locally periodic. Linear × RBF

leads to smooth functions with increasing amplitude.

6.2 Experiment 1: Distinguishing Compositions

The first experiment assessed whether participants could successfully identify a

previously encountered composition from its single-kernel components and the

alternative composition. Detecting the same compositional structure in a new

pattern is a minimal requirement for assessing people’s ability to generalize com-

positional functions.



6.2. Experiment 1: Distinguishing Compositions 103

6.2.1 Participants

We recruited a total of 50 participants (Mage = 31.0, SDage= 6.84, 16 female,

34 male) through Amazon’s Mechanical Turk web service. Participants had to

have more than 50 approved tasks with an approval rate of 95% or higher. The

experiment took about 5 minutes and participants received $0.30 for their par-

ticipation.

6.2.2 Materials

We generated a set of 100 realizations from each of the base kernels and the

compositions. Samples were evaluated over x = [0,0.1, . . . ,10]. On each trial,

two of the three kernels were sampled without replacement, and one composition

rule (+ or ×) was chosen at random. In the test set, participants again saw one

function sampled from each of the two kernels presented in the test set and then

had to choose the most likely composition of the two kernels from a set of options.

The four proposed options were samples from the true function, the alternative,

and the two base kernels that generated the functions; see Figure 6.1. Note that

while the kernels that generated the patterns were carried over from training to

test set, each realization was a unique pattern.

6.2.3 Procedure

Participants were told that they had to reason about sales patterns of different

fictitious alien plants on the intergalactic market. First, they were shown pat-

terns from two different plants and their offspring. They were told that the x-axis

marked the days over which a plant was traded and that the y-axis showed how

well it sold on a particular day. Finally, sales patterns for two new plants were

shown, and participants had to choose the sales pattern of their potential off-

spring. To familiarize participants with the task, participants first completed an
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example trial and had to answer four comprehension checks successfully. They

then saw the ten trials and were told that they should treat every trial as a new

set of sales patterns.

6.2.4 Results

We modeled the task by fitting two hierarchical Bayesian models – one in which

we aggregated across stimuli and focused on each individual participants’ choice

counts (correct, other, or single), and one in which we aggregated across partici-

pants and focused on per-condition counts. Both models had the same structure:

the proportion of choices for each of the options was modeled as a Binomial dis-

tribution c ∼ Binomial(p), where the proportion of successes was p ∼ logit−1(θi),

and each participants’ or conditions’ θi ∼ N (µ,σ), mean and variance were pooled

across groups, µ ∼ N (logit(p0),2). We centered the hyperprior µ on chance-level

proportions (p0 = 1/4 for correct and other proportions, p0 = 1/2 for single-choice

proportions) and specified a broad variance (σ = 2, corresponds to 95% of the prior

distribution being between 2% and 98% for µ = 1/4).

Participants selected the sales pattern generated by the true composition

(204 out of 500, 41%) more often than the pattern generated by the alterna-

tive composition (126 out of 500, 25%. Estimates for the true pattern (p̂ = 0.41,

HPD95 = [0.36,0.45]) exhibited credibly higher proportions than the alternative

(p̂ = 0.25, HPD95 = [0.21,0.29])2).

Participants chose the single component at higher rates than the alternative,

but lower than the correct composition (170 out of 500, 34%). The estimated

proportions were lower than the true proportion, but exhibited some overlap in

their HPDs (p̂ = 0.33, HPD95 = [0.27,0.39]).

We also analyzed how many of the participants chose the correct composition

2Two-sided Fishers’ exact tests were generally consistent with our Bayesian analysis across
this chapter.
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(a) Posterior p̂ for each option.

0.2 0.4

0.36 0.45

95% HPD

mean=0.41

0.0% <0.25< 100.0%

0.2 0.3

(b) Posterior p̂ for the true function.

Figure 6.3: In Experiment 1 participants selected the true pattern over the alternative

rule and the constituent patterns (Figure a). Figure (b) displays the reference value

(1/4) and the surrounding ROPE ([0.2,0.3]), as well as p̂ (M = 0.41, HPD95% =

[0.36,0.45]). Since 100% of the HPD are larger than the ROPE (orange text), we

can state that the proportion is credibly larger than 1/4.

more frequently than expected at chance level. We contrasted HPD95 of our

obtained estimates against chance level (1/4), including a 5% buffer [0.2,0.3] to

form a region of practical equivalence (ROPE). We can then accept or reject the

hypothesis that our obtained proportions are different from chance. If the ROPE

is entirely contained in the HPD95, we accept the H0, i.e., we find evidence for

participants’ choosing at chance-level. If the ROPE and the HPD95 form disjoint

sets, we can reject the H0. Finally, any other overlap is treated as undecided,

with the percentage of overlap indicating how dissimilar the estimates were. For

a recent introduction into hypothesis testing via ROPE, see Kruschke (2018).

All participants exhibited proportion estimates greater than 1/4. Further-

more, 38% of the participants’ estimates were credibly higher than chance (19

out of 50 had no overlap between the ROPE and the HPD95) and the remaining

31 had only negligible overlap with the ROPE (Moverlap = 0.02%, SDoverlap =
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0.3,max = 0.12).

0.2 0.3 0.4 0.5 0.6

ROPE µ̂

Figure 6.4: Per-participant median estimates (solid circles) in Experiment 1, 5% and

95% HPD intervals. In green, the overall participant estimate µ and its 95% HPD.

In orange, the ROPE around chance level 1/4.

Finally, we analyzed participants’ performance, given the true underlying rule.

Participants performed well if the true underlying rule was an additive (47 out

of 84, 56%) or multiplicative composition of a linear and a periodic kernel (35

out of 80, 44%), and their HPD95 was credibly above the ROPE, p̂+ = 0.53,

HPD95+ = [0.43,0.63]; p̂× = 0.43, HPD95× = [0.33,0.52] 3.

Similarly, participants selected the correct pattern at high proportions for

additive (35 out of 71, 49%) and multiplicative (39 out of 91, 43%) combinations

of linear and RBF at rates higher than chance. Again, HPD95 were credibly above

the ROPE, p̂+ = 0.48, HPD95+ = [0.38,0.59]; p̂× = 0.42, HPD95× = [0.33,0.51].

Performance was not better than chance for additive compositions of RBF and

3Exact binomial tests against 1/4 were consistent with the Bayesian analysis throughout
this chapter.
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periodic kernels (20 out of 83, 24%, p̂ = 0.27, HPD95 = [0.18,0.37]). Neither were

multiplicative combinations selected credibly higher than chance (28 out of 91,

31%, p̂ = 0.33, HPD95 = [0.22,0.41]). For the observed proportions, see Figure

6.5, for estimated proportions p̂; see Figure 6.6.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Proportion Selected

Linear+Periodic

Linear×Periodic

Linear+RBF

Linear×RBF

Periodic+RBF

Periodic×RBF

Choice
Correct
Other
Single

Figure 6.5: Choice proportions for each of the six underlying rules and chance level

(dashed line) in Experiment 1. Note that the single proportions contain both con-

stituent options.

Overall, Experiment 1 showed that participants were able to detect the rules in

the test set and used that knowledge to generalize to novel instances. However, for

combinations of RBF and periodic kernels, participants were less inclined to infer

the true composition, potentially because the composition of these patterns was

more challenging to distinguish from the alternative composition or the individual

constituents.

While participants successfully generalized the rules from only one example,

both training and test set corresponded to the same combination of kernels. Thus,

this one-shot generalization could simply amount to generalizing the pattern with-
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Linear×Periodic

Linear+Periodic

Linear×RBF

Linear+RBF

Periodic×RBF

Periodic+RBF
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Figure 6.6: Per-rule median estimates (solid white circles) in Experiment 1, 5% and

95% HPD intervals. In green the overall participant estimate µ and its 95% HPD.

In orange the ROPE around chance level (1/4). The solid blue circles correspond to

the observed proportions.

out detecting the compositional rule. A stronger form of one-shot generalization

would entail generalizing the compositional rule to new combinations of kernels.

This would amount to perceiving the compositional operation underlying the ex-

ample rule and participants being able to apply it to a new pattern pair. We

assessed this ability in Experiment 2.

6.3 Experiment 2: Generalizing a Composition

In Experiment 2, we tested whether participants generalize the compositional

rule from the test set to a composition involving a new component. This would

amount to inferring the compositional rule underlying the example and applying

it to a new set of patterns, thus providing strong evidence for compositional
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mechanisms in function learning.

6.3.1 Participants

We recruited 50 participants (Mage = 30.5, SD = 7.04, 19 female, 31 male)

through Amazon’s Mechanical Turk web service. Participants had to have more

than 50 approved tasks with an approval rate of 95% or higher. The experi-

ment took about 6 minutes on average, and participants received $0.30 for their

participation.

6.3.2 Design and Procedure

The design and procedure were the same as in Experiment 1 with one difference:

in the test set, one of the base kernels was replaced with the remaining kernel.

For example, if the training set consisted of the RBF and linear kernel, the test

set consisted of the RBF and periodic, or linear and periodic kernel.

6.3.3 Results

In contrast to Experiment 1, proportions for patterns corresponding to single

kernels were higher than the true pattern (177 out of 500, 35%, p̂ = 0.35, HPD95 =

[0.29,0.4]), see Figure 6.7.

More importantly, participants did not select the sales pattern generated by

the true composition (164 out of 500, 33%) credibly more often than the al-

ternative (159 out of 500, 32%). Similarly, estimated proportions for the true

pattern (p̂ = 0.32, HPD95 = [0.27,0.38]) did strongly overlap with the alternative

(p̂ = 0.32, HPD95 = [0.27,0.36]). There was therefore no evidence for a difference

between the two compositions.

While all participants exhibited proportion estimates larger than chance, none

of those estimates were credibly different from the ROPE (all 50 participant
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(a) Posterior p̂ for each option.
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(b) Posterior p̂ for the true function.

Figure 6.7: In contrast to Experiment 1, participants did not select the true pat-

tern over the alternative rule or the constituent patterns (Figure a). The estimated

proportion p̂ overlapped significantly with the the random-chance ROPE (Figure b).

proportion estimates overlapped with the ROPE, Moverlap = 32%, SDoverlap =

13%. For the observed proportions, see Figure 6.8; for estimated proportions p̂,

see Figure 6.9.

Participants selected the correct choice slightly higher than chance rates for

additive compositions, see Figure 6.10. However, all HPD95 intervals overlapped

with the ROPE, therefore there was no credible difference between the ROPE

and the estimates. Multiplicative compositions were selected less frequently, and

again all HPD95 intervals overlapped with the ROPE.

Interim Discussion

Experiment 1 showed that participants generally preferred compositional rules

and could distinguish the true composition from the alternative. However, in Ex-

periment 2, we did not find that participants could generalize these compositions

to novel combinations.
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Figure 6.8: Choice proportions for each of the six underlying rules and chance level

(dashed line) in Experiment 2.

However, the kernels we selected might have been sub-optimal for the ex-

perimental design, as their compositions can result in patterns visually indis-

tinguishable from the alternative or the constituents. This explanation is espe-

cially suggestive for multiplications of RBF and periodic since RBF can exhibit

semi-periodic patterns. Thus, participants might not have been able to detect

any composition at all for conditions where periodic and RBF were the example

rule (RBF×Linear and Periodic×Linear). Also, the choice pattern RBF×Lin-

ear might not have been salient enough for participants to distinguish it from

its alternative RBF×Linear. Thus even if participants inferred a multiplicative

pattern for conditions with Periodic×Linear or RBF×Linear as example rules,

they might have been at chance level selecting between the Periodic×RBF and

Periodic+RBF patterns.

In Experiment 3, we tested if a more salient kernel in the context of the

training set would allow rule generalization. We replaced the RBF kernel with
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0.2 0.4 0.6

ROPE µ̂

Figure 6.9: Per-participant median estimates (solid circles) for Experiment 2, 5% and

95% HPD intervals. In green, the overall participant estimate µ and its 95% HPD

interval. In orange, the ROPE around chance level 1/4.

the Ornstein-Uhlenbeck kernel (OU). Samples from an OU kernel are less smooth

than samples from the RBF kernel and, therefore, might be easier to distinguish

visually from periodic samples. For a comparison of samples from an OU, RBF,

and periodic kernel, see Figure 6.11.

6.4 Experiment 3: Generalizing Distinguishable Com-

positions

6.4.1 Participants

We recruited 50 participants (Mage = 32.54, SDage = 9.58, 20 female, 30 male)

through Amazon’s Mechanical Turk web service. Participants had to have more

than 50 approved tasks with an approval rate of 95% or higher. The experiment
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Figure 6.10: Per-rule median estimates in Experiment 2 (solid white circles), 5% and

95% HPD intervals. In green, the overall participant estimate and its 95% HPD. In

orange, the ROPE around chance level (1/4). The solid blue circles correspond to

the observed proportions.

took 6 minutes on average, and participants were paid $0.30 for their participa-

tion.

6.4.2 Design and Procedure

We replaced the RBF kernel with an OU kernel. Otherwise, the design and

procedure were the same as in Experiment 2.

6.4.3 Results

As in Experiment 1, participants selected the correct pattern (204 out of 500,

41%, p̂ = .4,HPD95 = [0.33,0.46]) at higher rates than the single patterns (150

out of 500, 30%, p̂ = .28,HPD95 = [0.2,0.33]). The correct pattern was selected at
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(a) Linear+OU (b) Linear×OU

(c) Periodic+OU (d) Periodic×OU

Figure 6.11: Samples resulting from adding linear and OU kernels exhibit a linear

trend with additive random-walk patterns. Multiplication of OU and linear generates

samples that exhibit random-walks with increasing variance. For compositions of pe-

riodic and OU, patterns are difficult to distinguish. Periodic+OU samples correspond

to a periodic pattern added to a mean-reverting random walk. Periodic×OU samples

correspond to a periodic pattern stretched by a random walk.
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credibly higher rates than the alternative (146 out of 500, 29%, p̂ = .28,HPD95 =

[0.23,0.33]), see Figure 6.12.

0.2 0.3 0.4 0.5

Correct

Other

Single

(a)

0.2 0.4

0.33 0.46

95% HPD

mean=0.4

0.0% <0.25< 100.0%

0.2 0.3

(b)

Figure 6.12: In Experiment 3, participants did select the true pattern over the alter-

native rule or the constituent patterns.

All participants exhibited proportion estimates larger than chance, and nine

out of 50 participants had proportion estimates for the correct composition cred-

ibly above the ROPE. The other participants were undecided and often had low

overlap with the ROPE (Moverlap = 19%, SDoverlap = 15%). For all participants’

estimates, see Figure 6.13.

Additive compositions were chosen at highest rates, with Linear+Periodic

chosen at highest proportions (45 out of 78, 58%, p̂ = .52,HPD95 = [0.40,0.63]).

Linear+OU was selected at similar high rates (35 out of 71, 49%, p̂ = .46,HPD95 =

[0.36,0.57]). Finally, the true composition was selected frequently for Cos+OU

(35 out of 96, 36%, p̂ = .38,HPD95 = [0.29,0.46]), however, the alternative was

also selected often.

The multiplicative compositions resulted in lower proportions of correct pat-

terns selected, and proportions were also lower than chance-level and the alter-

native compositions. While Linear×OU was selected relatively frequently (31
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0.2 0.4 0.6 0.8

ROPE µ̂

Figure 6.13: Per-participant median estimates (solid circles) for Experiment 3,5% and

95% HPD intervals. In green, the overall participant estimate µ and its 95% HPD

interval. In orange, the ROPE around chance level 1/4.
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out of 87, 36%, p̂ = .37,HPD95 = [0.28,0.46]), the alternative, Linear+OU, was

selected more often (36 out of 87, 41%). Similarly, Linear×Periodic was selected

above chance (39 out of 87, 34%, p̂ = .36,HPD95 = [0.28,0.45]), but the alterna-

tive was selected at higher rates (36 out of 87, 41%). Cos×OU was not selected

credibly above chance (28 out of 81, 35%, p̂ = .36,HPD95 = [0.27,0.46]). Instead,

participants preferred to select the constituents Periodic and OU. For the pro-

portions selected for each composition, see Figure 6.14 for estimated proportions,

see Figure 6.15.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Proportion Selected

Linear+Periodic

Linear×Periodic

Linear+OU

Linear×OU

Periodic+OU

Periodic×OU

Choice
Correct
Other
Single

Figure 6.14: Choice proportions for each of the six underlying rules and chance level

(dashed line) in Experiment 3.

Experiment 3 suggests that one of the reasons participants in Experiment 2

did not generalize the pattern was that the patterns were not visually distinct

enough. Substituting the RBF kernel with a more salient OU kernel, we found

that participants were able to generalize the compositional rules for additive com-

positions. However, for multiplicative rules, they generally preferred the additive

alternative. Finally, for Periodic×OU, they selected the constituents, potentially
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Linear×OU

Linear+OU

Linear×Periodic

Linear+Periodic

Periodic×OU

Periodic+OU

0.2 0.3 0.4 0.5 0.6

ROPE µ̂

Figure 6.15: Per-rule median estimates in Experiment 3 (solid white circles), 5% and

95% HPD intervals. In green, the overall participant estimate and its 95% HPD. In

orange, the ROPE around chance level (1/4). The solid blue circles correspond to

the observed proportions.
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because Periodic×OU was not distinguishable enough from its constituent pat-

terns.

6.5 Experiment 4: Alternative Explanations

Experiments 1-3 provided some evidence that participants could detect and gen-

eralize the compositional structure of functions. However, this ability was limited

to additive compositions and depended on the distinctiveness of the kernels.

Given this interdependence, one natural alternative explanation is that partic-

ipants simply matched the offspring in the training set to the presented samples.

For example, surface features in the offspring pattern, such as local variance or

monotonicity, could be sufficient to allow participants to guess the right pat-

tern. This behavior would invalidate our hypothesis that participants engaged in

rule-learning, since they would not detect the compositional rule, nor apply the

composition to a new pair of stimuli. Experiment 4 assessed whether the true

composition could be detected solely based on features of the offspring in the

training set.

6.5.1 Participants

We recruited 50 participants (Mage = 32.83, SDage = 10.63, 20 female, 30 male)

through Amazon’s Mechanical Turk web service. Participants had to have more

than 50 approved tasks with an approval rate of 95% or higher. The experi-

ment took about 5 minutes on average, and participants received $0.30 for their

participation.

6.5.2 Design and Procedure

The design and procedure were the same as in Experiment 3 with one crucial

difference: participants did not see any samples of the base kernels. Thus only
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the composition in the training set and no samples in the test set were shown.

Participants were instructed to imagine the rules by which the sample in the

training set was produced and then pick the pattern that they thought was most

likely created by applying the same rule.

6.5.3 Results

Participants did not choose the true composition (141 out of 500, 28%, p̂ = 0.28,

HPD95 = [0.23,0.32]) more frequently than the alternative (p̂ = 0.23, HPD95 =

[0.19,0.26]). For the overall estimates, see Figure 6.16. Participants instead chose

0.2 0.3 0.4 0.5

Correct
Other

Single

(a)

0.2 0.3

0.23 0.32

95% HPD

mean=0.28

10.4% <0.25< 89.6%

0.2 0.3

(b)

Figure 6.16: Without the presentation of the constituent patterns, participants did

not select the correct pattern significantly more than the alternative.

the single components (245 out of 500, 49%, p̂ = 0.49, HPD95 = [0.45,0.54]).

While all participants produced correct proportion estimates numerically higher

than chance, none of the posterior estimates were credibly different from chance

(all undecided, Moverlap = 58%, SDoverlap = 8%), see Figure 6.17.

Only Linear×OU was selected often, but did overlap with the ROPE (30

out of 87, 34%, p̂ = 0.3, HPD95 = [0.24,0.39]). All other compositions were not
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0.1 0.2 0.3 0.4 0.5

ROPE

Figure 6.17: Per-participant median estimates (solid circles) for Experiment 4, 5%

and 95% HPD intervals. In green, the overall participant estimates and its 95% HPD

interval. In orange, the ROPE around chance level 1/4.
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selected at rates credibly above chance.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Proportion Selected

Linear+Periodic

Linear×Periodic

Linear+OU

Linear×OU

Periodic+OU

Periodic×OU

Choice
Correct
Other
Single

Figure 6.18: Choice proportions for each of the six underlying rules and chance level

(dashed line) in Experiment 4.

6.6 Discussion and Conclusion

We explored the human ability to discover and generalize compositional rules in

the domain of function learning. Experiment 1 showed that people could dis-

tinguish compositions from simpler generating functions, as well as alternative

compositions. The second experiment assessed generalization to a new composi-

tion. In this more complicated version, participants did not succeed at reliably

identifying the correct rule. However, when we replaced the RBF kernel with

the more distinctive OU kernel, we found that participants could infer the true

compositional rule for additive compositions.

Moreover, when the training set did not contain the individual components,

participants were unable to identify the true composition, suggesting that the
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Linear×OU

Linear+OU

Linear×Periodic

Linear+Periodic

Periodic×OU

Periodic+OU

0.20 0.25 0.30 0.35

ROPE

Figure 6.19: Per-rule median estimates in Experiment 4 (solid white circles), 5% and

95% HPD intervals. In green, the overall participant estimate and its 95% HPD. In

orange, the ROPE around chance level (1/4). The solid blue circles correspond to

the observed proportions.



124 Chapter 6. Generalizing Function Compositions

generalization in Experiments 1 and 2 rested on understanding how patterns

combined and not merely on surface-level features. We, therefore, conclude that

people can recognize compositional structure in functions and, for additive and

visually sufficiently distinct patterns, perform one-shot generalization.

The inability of participants to generalize multiplicative patterns poses an in-

teresting question – are humans biased against inferring these compositions, or are

the particular compositions we picked not identifiable? Research in rule-learning

and causal reasoning has shown that human learners heavily favor particular

compositions. In rule-learning, research starting from the foundational work of

Bruner et al. (1956) and Shepard et al. (1961) has shown that some logical forms

are easier to learn. Adults expect conjunctive rules and learn those faster than

disjunctive rules (Alfonso-Reese et al., 2002; Bourne, 1970; Salatas and Bourne,

1974). In contrast, in causal reasoning, adults are biased towards causes that in-

dependently bring about their effects. They expect disjunctive causes and learn

these relationships more quickly (Lucas and Griffiths, 2010). Interestingly, this

seems to be a bias acquired through development, as children are more flexible

than adults and more rapidly infer conjunctive rules (Lucas et al., 2014; Gopnik

et al., 2017).

Our results suggest that function learning mimics the biases observed in the

rule-learning literature, as additive compositions correspond to conjunctive state-

ments. This preference could be the result of tracking real-world statistics (Grif-

fiths and Tenenbaum, 2006). If real-world sales patterns are more likely to be

composed additively, a bias towards additivity might be adaptive. Indeed, when

Quiroga et al. (2018) assessed participants’ intuitive priors over structures, most

of the likely compositions were combined additively and contained a linear com-

ponent. However, research in rule-learning and causal learning has highlighted

the critical role of contextual information and stimulus features. Research in

causal learning has shown that participants form expectations about how causes



6.6. Discussion and Conclusion 125

interact to bring about an effect. For example, Waldmann (2007) showed that

participants expected combinations of liquids to affect heart-rate additively if the

effect was the result of the liquids’ taste. If heart rate instead depended on the

liquids’ strength, participants assumed that the average of the two liquids was the

form of the relationship. These results suggest that participants disfavored mul-

tiplicative combinations in the context of our cover story because they expected

biological traits to interact additively.

Finally, complex interactions between constituent stimuli and their compo-

sitions might have skewed our results. In rule-learning, characteristics of the

stimuli have been suggested to bias participants towards conjunctive or disjunc-

tive forms, with integrable stimuli producing conjunctive biases and separable

attributes resulting in disjunctive inferences (Bourne Jr, 1979; Reznick et al.,

1978, for an alternative explanation, see Ketchum and Bourne Jr (1980)). Thus,

the visual characteristics of the kernels may result in different expectations of

composition and decomposition. For instance, while linear or periodic samples

might be treated as atomic constituents and combine easily, RBF or OU samples

might be treated as more complex, potentially decomposable structures. Future

research should investigate these issues in detail to uncover the set of character-

istically human kernels underlying human function generalization.

In the next chapter, we will continue exploring what sorts of compositional

structures can be learned and how people decide between extrapolating based on

a complex, compositional function or simpler alternatives.





Chapter 7

Transferring Function Compositions

In the previous chapter, we saw that people could detect compositions and gener-

alize additive combinations to new pairs of functions. However, instead of extrap-

olating, participants only had to choose between (possibly unconvincing) options,

and our experimental design always implied that features were combined, which

suggested compositions. Thus it is unclear whether people can use the inferred

compositional structure to extrapolate. Here we expand our analysis of Chapter

6, first by asking participants to extrapolate, and second by evaluating what kind

of expectations people form when repeatedly faced with complex compositional

functions.

Repeated exposure to a pattern changes one’s expectations about future pat-

terns. If the pattern is perceived as governed by a simple function, for example,

a linear function, future expectations will be biased to infer linear relationships.

If instead, the pattern is a composition of functions, future inferences will be

biased toward that composition. However, the representation of the composi-

tion and its encoding in memory will affect what kind of biases are produced.

One possibility is that the whole composition is chunked and remembered as a

non-decomposable unit. For example, many time series exhibit cyclical patterns,

such as seasonal changes and daily day-night cycles. Frequently observing these

127
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patterns co-occurring, one forms an expectation that phenomena in the same

domain share the same structure. Learning this composition of two cyclical pat-

terns as a chunk would only allow the inference of that particular composition,

and one could not infer the yearly structure without inferring the daily cycle.

Alternatively, both the constituents and the compositional operation could be

encoded in a language-like representation. Analogous to Goodman et al. (2008),

hypothesized functions could be generated and learned as compositions of simpler

constituent functions. The hypothesis space that people consider when learning

functions is produced by a probabilistic language of thought, and hypotheses

are compositional expressions generated from a grammar over hypotheses (for

an overview, see Piantadosi and Jacobs, 2016). After seeing the doubly-periodic

patterns, one would form an expectation of periodic patterns and additive com-

positions occurring. Given a new situation, one would not necessarily infer the

additive composition of the two periodic patterns, but favor additive composi-

tions, and the two periodic relationships.

To see how both hypotheses predict different generalization behavior, con-

sider one last example. After learning about the doubly-periodic pattern and

frequently observing it in time series, a new pattern is encountered. The pattern

exhibits a clear seasonal pattern but no daily cycle. If exposure to the doubly-

cyclic pattern resulted in the storage of a non-decomposable chunk, one would

expect the new pattern to be doubly periodic. If the chunk cannot account for

the new pattern, default inductive priors would guide extrapolation, and most

likely, extrapolation would be linear. These results would be consistent with

general simplicity biases in cognition and explanation (Pothos and Chater, 2002;

Blanchard et al., 2018) and previous results in function learning by Wilson et al.

(2015). In contrast, if one learns how the pattern was composed, we would predict

that extrapolation is based on an additive composition of the seasonal pattern

and another function, perhaps an a priori salient linear function. That is because
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learning about the doubly periodic pattern resulted in biases towards additivity

(of any two functions), and biases toward both the seasonal and daily cycles.

7.1 Experiments

In this chapter, we explored these predictions. Concretely, we examined how

repeated exposure to either a constituent of a compositional pattern or repeated

exposure to the compositional pattern reflected in subsequent extrapolations.

Our experiments adopted the same general design as in Chapter 5. However,

while in previous experiments, participants received training consistent with one

particular function in Chapter 3, or variations of the same function in Chapter 5,

here the training exhibited repeated compositional structure. Figure 7.1 shows

the experimental setup.

We presented participants with two compositional extrapolation patterns (the

training set), with samples generated from additive compositions of three kernels

(linear, periodic, OU). The training set’s compositional structures were either two

repetitions of the same composition (A+B, A+B), or had one shared, overlapping

component (A+B, A+C). Afterward, they saw a new pattern (the test set) and

again had to extrapolate. They were told that all three sets belonged to the same

underlying function. The test was consistent with one of the repeated constituents

in the training set (for example, for the overlapping condition: A+B, A+C →

A). We will call the conditions according to the shared structure in training

repeated and non-repeated (or overlapping) and further differentiate according

to the underlying transfer pattern into linear and periodic training sets1.

For example, for linear training sets, participants in the repeated training

would see two patterns generated by a linear and periodic function (2×Lin+Cos).

In the non-repeated training, participants would instead see one pattern gener-
1We require this further differentiation, as one pattern Lin+Cos repeated had two corre-

sponding transfer sets (linear and periodic).
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Figure 7.1: Participants received two training sets and subsequently had to extrapolate

in the transfer set. The training sets were samples from compositional functions.

Across the two training sets, the compositional structure overlapped in one constituent

of the composition, or the whole composition was repeated. For example, participants

in the overlap condition could have first received data sampled from Lin+OU and

then Lin+Cos (with the constituent Lin overlapping). In the repeated condition,

participants would be presented with two realizations of the same composition, here

Cos+Lin. In the transfer block, participants received a third set of data. The data in

the transfer block was not indicative of the compositional pattern, but only reflected

one overlapping constituent.
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ated from a linear and a periodic function and one pattern generated by a linear

and an OU function. The full set of experimental conditions was 2×Lin+Cos,

Lin+Cos→Lin+OU, and Lin+Cos→Lin+OU, for linear transfer, and 2×Cos+Lin,

2×Cos+OU, and Cos+Lin→Cos+OU, for periodic transfer sets. Note that the

transfer set is denoted by the leading condition name.

We hypothesized that for repeated training sets, participants would form an

expectation for the composition. Then, when faced with the transfer set, many

participants should prioritize the instruction that all patterns belonged to the

same function and extrapolate as in the training set. Thus they would pick a

more complex hypothesis over the simpler constituent. In contrast, we expected

that participants would select the simpler, repeated function that was also sug-

gested by the test set for overlapping training. To contrast our predictions with

participants’ extrapolations in the absence of training, we also tested two control

conditions in which no training was provided. If participants formed strong biases

for compositional or shared constituents, this would provide evidence for the idea

that people represent much like a probabilistic language of thought.

7.1.1 Participants

We recruited a total of 402 participants (Mage = 32.18,SDage = 10.39; 180 female,

222 male) on Amazon Mechanical Turk. Participants had to have completed more

than 50 approved tasks with an approval rate of 95% or higher. In total, 302

participants completed the experimental conditions and 100 were in the control

conditions. Participants in the experimental conditions received $0.85 for par-

ticipation and took less then 10 minutes (M = 8.39, SD = 7.01) to complete the

experiment. The control condition took about 4 minutes to complete (M = 3.30,

SD = 3.47) and participants received $0.50. Participants were randomly assigned

to the experimental and control conditions (NLin+Cos→Lin+OU = N2×Lin+OU = 51,

all other conditions N = 50).
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7.1.2 Procedure

As in the experiments in Chapter 5, participants were instructed that they would

learn the relationship between two substances, substance x and substance y.

They were told that all patterns followed the same regularity and that they had

to predict the relationship for ten new values. As in Chapter 5, they received a

visual aid depicting the training setup.

In the control conditions, participants were only instructed that they would be

presented with a relationship between two substances and that they would have

to first extrapolate for a new pattern. Then they had to choose the most likely

relationship from a set of six patterns. In contrast to our previous experiments,

we adopted a within-participant design. Thus the same participants performed

both extrapolation and forced-choice tasks.

7.1.2.1 Training Phase

In both training blocks, the extrapolation task was presented in the form of a scat-

ter plot. Participants were presented with data and extrapolated the value of the

substance by selecting the height of the y-axis. Participants were then shown the

actual value as feedback for one second. If their choice deviated by ±0.025 from

the actual value, they had to readjust their selection. During this re-selection,

the actual value was visible. Training blocks were presented in randomized order.

7.1.2.2 Test Phase

After training, participants were reminded that the next pattern followed the

same relationship. Then they were presented with either the linear or periodic

three-point pattern and had to extrapolate for 30 points without feedback.
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7.1.2.3 Choice Phase

Once participants had submitted the 30 extrapolation values, they proceeded to

the forced-choice task. Participants were instructed that they would be presented

with a pattern of three points that belonged to the same relationship as in the

training phase. They then had to choose from six patterns, the one they deemed

the most likely relationship for the 3-point pattern. The six patterns were scatter

plots corresponding to one conditional sample given the three basic kernels and

their additive compositions (see Section 7.1.3). Options were presented in ran-

domized order, and the presented function realization was counterbalanced. After

the test phase, participants completed a short demographic survey, were debriefed

and compensated. For screenshots of the experimental stimuli and instructions,

see Appendix D.

7.1.3 Materials

The functions were sampled from three constituent GPs. We chose the same three

kernel types and mean functions as in Chapter 5, but this time composed these by

adding kernels. These materials allowed us to express more complex generating

mechanisms. The three resulting additive kernels were Lin+Cos, Lin+OU , and

Cos+OU . For the hyperparameters for those kernels, see Table 7.1.

7.1.3.1 Training Sets

We generated training data by sampling three sets of 30 points in the range

0.05–0.95. We resampled if the data did not fall in the presentation range [0,1],

or if the samples were visually not indicative of the GP2.

The first 20 points were provided as evidence. For the remaining 10 points,

participants had to extrapolate the target value. Participants received one realiza-
2For instance, samples from a OU kernel could produce trends or semi-periodic patterns for

the experiments’ range of presentation.
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Table 7.1: Kernels and kernel parameters (variance σ, lengthscale λ, intercept β0,

and slope β1 ) generating the training data. For all models, we set the noise variance

σ = 0.01.

σ λ β0 β1

Lin 0.018 – 0.2 0.5

Cos 0.03 0.035 0.5 –

OU 0.05 1 0.5 –

tion of the three sets. The order of block presentations was also counterbalanced.

For the three realizations of the training data, see Figure 7.2.

(a) Linear + Periodic (b) Linear + OU (c) Periodic + OU

Figure 7.2: Training data used in the experimental conditions (three realizations of

each function). For each condition, there were two sets of points to be learned.

Participants received the first 20 points and had to extrapolate for the 10 remaining

points. The dashed line is the cutoff between presented evidence and training.
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7.1.3.2 Transfer Set

The data in the transfer set consisted of three points, x = {0.05,0.17,0.30}, and

three sets of corresponding target values in all conditions:

yLin = [{0.25,0.30,0.39},{0.24,0.28,0.35},{0.22,0.26,0.30}],

yCos = [{0.60,0.44,0.52},{0.39,0.60,0.40},{0.66,0.35,0.63}].

Participants had to extrapolate 20 points in the range 0.67–0.95.

7.1.3.3 Forced-Choice Options

The samples for forced-choice were generated from the three compositional GPs

(Lin+Cos, Cos+OU , Cos+OU), as well as the three constituent kernels (Lin,

Cos, OU). We conditioned these GPs on the three extrapolation points (see

Section 7.1.3.2) and generated three samples for the range 0.67–0.95. Again, we

resampled if the samples fell out of the presentation range or were visually not

representative of the implied function.

Participants received one of those samples at random for each of the six op-

tions. Options matched the participants’ conditions: Participants who received

the linear transfer set had forced-choice options conditioned on the linear points.

Participants who received periodic data in the transfer set had options corre-

sponding to those points. For the samples presented for linear transfer sets, see

Figure 7.3; for periodic transfer set options, see Figure 7.4.

7.2 Results

7.2.1 Training Errors

We calculated MAEs for extrapolations in the training blocks for submissions

before the participants had received feedback. Error was lowest in the linear
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(a) Cond. linear: Linear (b) Cond. linear: Cos (c) Cond. linear: OU

(d) Cond. linear: Linear+Cos (e) Cond. linear: Linear+OU (f) Cond. linear: Cos+OU

Figure 7.3: The six options presented in the forced-choice block for the linear transfer

set conditions. Participants received one sample (from three realizations) of of each

option at random.



7.2. Results 137

(a) Cond. Cos: Lin (b) Cond. Cos: Cos (c) Cond. Cos: OU

(d) Cond. Cos: Cos+Lin (e) Cond. Cos: Lin+OU (f) Cond. Cos: Cos+OU

Figure 7.4: The six options presented in the forced-choice block for the periodic

transfer set. Participants received one sample (from three realizations) of each option

at random.
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conditions with 2×Lin+OU exhibiting the lowest errors (M = 0.08,SD = 0.05),

followed by Lin+Cos→Lin+OU (M = 0.09, SD = 0.03).

Error for 2×Lin+Cos was higher (M = 0.11, SD = 0.05). We discuss errors

for both 2×Lin+Cos and 2×Cos+Lin aggregated across both function condi-

tions (linear vs periodic), since during the two training blocks both conditions

were identical. Both remaining periodic conditions exhibited similarly high er-

rors (MCos+Lin→Cos+OU = 0.11, SDCos+Lin→Cos+OU = 0.03, M2×Cos+OU = 0.11,

SD2×Cos+OU = 0.02).
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Figure 7.5: Averaged errors across the two training blocks. Errors were similar across

conditions and only 2×Lin+OU was somewhat lower. Boxplots display first, second

(median) and third quartiles. Whiskers show the 1–5 interquartile range (IQR).

7.2.1.1 Error Decay

We did not expect a strong reduction in error across the two blocks since we

presented only two training sets, and those blocks contained functions that are

known to be difficult to learn (cyclical and noisy). Furthermore, two conditions
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did not share the same functional form across training, which should lead to

high error and no decrease across training blocks. As in Chapter 5, we evaluated

how well several Bayesian models captured the change in MAEs across blocks.

Consistent with the results in section 5, we found that a hierarchical log-normal,

log(error) ∼ N (µ,σ) model fit the data best. For a discussion of our model results

and model comparisons, see Appendix F.2.1.
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Figure 7.6: Mean absolute error across training blocks and condition. Error bars

display 95% bootstrapped confidence intervals.

Estimates for the overall condition difficulty (intercepts) were fairly narrow,

around 0.1, reflecting that the conditions were homogeneous in terms of their over-

all error (HPD95 between 0.05–0.13). However, intercept estimates were broad

and for all conditions HPD95 spanned positive and negative ranges, reflecting the



140 Chapter 7. Transferring Function Compositions

Table 7.2: Group-level estimated means M̂ , for intercepts, β0, and slopes, β0, as well

as 95% highest-posterior density intervals estimated via MCMC for the log-normal

model.

M̂β0 HPD95β0 M̂β1 HPD95β1

2×Lin+Cos 0.09 [0.08, 0.11] -0.06 [-0.22, 0.12]

2×Lin+OU 0.07 [0.05, 0.09] -0.10 [-0.34, 0.12]

Lin+Cos→Lin+OU 0.08 [0.06, 0.10] -0.04 [-0.28, 0.23]

2×Cos+OU 0.10 [0.08, 0.13] 0.08 [-0.22, 0.38]

Cos+Lin→Cos+OU 0.10 [0.08, 0.13] -0.02 [-0.26, 0.26]
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Figure 7.7: Group-level estimates of error intercepts and slopes estimated via the

hierarchical Bayesian model.
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high inter-participant variability. While some participants managed to reduce

their errors across training blocks, even though the same function realization

was never repeated, for others, the error stayed constant or even increased. For

per-participant errors and model fits, see Figure F.11.

7.2.2 Extrapolations

In both control conditions, participants’ extrapolation patterns suggested that the

extrapolations were based on the training data presented. In the linear control

condition, extrapolations were generally consistent with a positive linear trend,

similar in slope to the three points presented. For the periodic control condi-

tion, most extrapolations suggested stationary, high-noise or possibly periodic

patterns. For extrapolations in the two control conditions, see Figure 7.8.
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Figure 7.8: Extrapolations in the two control conditions generally resembled the three

points presented in the transfer sets.

For experimental conditions, extrapolation patterns were more difficult to

characterize. In general, a large proportion of extrapolations in the linear con-

ditions suggested positive trends and often periodic or noisy additive structure.

For extrapolations in the two training sets and the transfer set for the Linear
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conditions, see Figure 7.9.
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Figure 7.9: Extrapolations in the linear experimental conditions. Extrapolations in the

transfer set generally exhibited positive slopes and, in many cases, additive periodic

or high-noise structure.
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For periodic conditions, extrapolations often suggested periodic or high-noise

patterns. For 2×Cos+Lin conditions, patterns suggested more positive trends

compared to the other conditions. For extrapolations in the two training sets

and the transfer set for the cosine conditions, see Figure 7.10. While visual

inspection suggested that many participants produced extrapolations consistent

with the compositions or constituents of the functions learned in the training sets,

the data is generally highly idiosyncratic and noisy. Thus, in the next section,

we attempted a more systematic classification of the extrapolation patterns.

7.2.2.1 Recovering Function Types from Extrapolations

As in the previous chapters, we evaluated which generating functions accounted

best for participants’ extrapolation patterns. We ran MLE for each individual

participant and each generating GP. Since our generating functions included ker-

nel compositions, the number of free parameters and their interactions made the

estimation task considerably more demanding. To aid inference and discourage

degenerate and non-kernel-specific solutions we constrained the hyperparameter

ranges3. This was necessary, since for instance, too-high Cos lengthscales in com-

bination with too-low variance would amount to practically linear functions. On

the other hand, too-short lengthscales can resemble extremely wiggly extrapola-

tions, which should be better captured by an OU kernel.

We ran up to 400 optimization runs, adaptively increasing the number of

optimizations for functions, including the periodic kernel. Optimization runs

were increased to allow the periodic functions to achieve comparably good fits4.

We then used the type of generating GP with the highest likelihood to predict

each participants’ condition. For a confusion matrix for all conditions and their
3λCos ∈ [0.02,0.05], σCos ∈ [0.02,02], λOU ∈ [0.02,02], σOU ∈ [0.015,0.2].
4Since we used the pure periodic kernel to fit the data, the model was not able to accommo-

date small deviations in frequency or amplitude (apart from the shared additive Gaussian noise,
σnoise). As a result, MLE struggled to find optimal parameter settings, as those were generally
concentrated in very narrow regions of the parameter space and surrounding parametrizations
exhibited extremely low likelihood scores.
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Figure 7.10: Extrapolations in the periodic conditions. In contrast to the linear

conditions, participants’ extrapolations exhibited less pronounced positive trends and

more periodic or high-noise patterns.
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best-fitting MLE functions, see Figure 7.11; for the five best-fitting extrapolations

in each condition, see Figure 7.12 and Figure 7.13.
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Figure 7.11: The MLE classification did heavily favor OU and Cos+OU in the peri-

odic conditions. For linear functions, the control condition and Lin+Cos→Lin+OU

were mostly classified as linear, whereas both 2×Lin+Cos was classified mostly as

Lin+Cos→Lin+OU and 2×Lin+OU was mostly classified as OU.

For the linear control condition, the majority of extrapolations were best

captured by a linear function (19 out of 50, 38%, p < .0015). However Lin+OU

was also assigned frequently (14 out of 50, 28%, p < .05). In the 2×Lin+Cos

conditions, the majority of participants were assigned Lin+OU (15 out of 50,

30%, p < .05). For 2×Lin+OU the majority of participants’ extrapolations were
5We again report one-sided, exact Binomial tests testing against chance (1/6).
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Figure 7.12: The five extrapolations with the highest likelihood scores in the four

linear conditions.
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Figure 7.13: The five extrapolations with the highest likelihood scores in the four

periodic conditions.
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best accounted for by OU (14 out of 51, 27%, p < .05). For Lin+Cos→Lin+OU,

extrapolations were mostly accounted for by linear functions (16 out of 51, 31%,

p < .05).

For the experimental linear conditions, our procedure did not fully capture our

expectations — for 2×Lin+Cos, practically no Lin+Cos functions were assigned.

On the other hand, for 2×Lin+OU conditions, the true composition Lin+OU

and both constituents were assigned relatively often. Similarly, in line with our

hypothesis, for Lin+Cos→Lin+OU, both constituent functions often fit partici-

pants’ extrapolations best. However, it is debatable whether this is due to the

participants’ extrapolations genuinely exhibiting these patterns or just because

of an advantage of the OU kernel (and additive combinations involving OU) in

capturing the idiosyncratic, but no-OU patterns.

The difficulty of accounting for the participants’ extrapolation patterns based

on the true generating functions was even more apparent in the periodic con-

ditions. In the control condition, most extrapolations were assigned to the OU

function (22 out of 50, 44%, p < .001). Similarly, for 2×Cos+Lin the majority of

the extrapolations were assigned to OU (19 out of 50, 38%, p < .001), followed by

Cos+OU (16 out of 50, 32%, p < .001). For 2×Cos+OU, again OU was assigned

most often (23 out of 50, 46%, p < .001), followed by Cos+OU (20 out of 50,

40%, p < .001). For Cos+Lin→Cos+OU, OU was assigned most often (17 out of

50, 34%, p < .001), followed by OU (16 out of 50, 32%, p < .001).

One explanation for the large proportion of OU estimates is that across experi-

mental and control conditions, participants’ extrapolations resembled the rugged,

autocorrelated OU-features, either because OU is highly salient and a priori fa-

vored, or because the inferred function was distorted due to the experimental

setup and as a result exhibited rugged features. Visual inspection of the extrap-

olation patterns, especially in the Lin+Cos→Lin+OU and Cos+Lin→Cos+OU

sets, suggested that some participants did provide such idiosyncratic and noisy
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extrapolations. However, overall this explanation is not entirely convincing since

participants did not favor OU in the control condition. Instead, participants’

extrapolations were better accounted for by a linear function.

An alternative explanation is that the functions we fitted to the participant

extrapolations were ill-equipped to account for the idiosyncratic extrapolations.

While the pure periodic and linear GPs can produce stereotypical patterns that

are ideal for generating experimental materials, these functions might be too rigid

to account for the highly variable human data. Both the linear and pure cosine

kernels have clear parametric analogs, and thus are ill-equipped to capture small

deviations from the expected function patterns. In contrast, the OU kernel is

more flexible and can capture the highly idiosyncratic human extrapolations.

While some of the participants’ extrapolations exhibited rugged and autocor-

related OU-like patterns, we favor this second explanation. Many of the extrapo-

lations assigned to OU were fairly regular, stereotypical up-down, cyclic patterns,

see Figures 7.16 and 7.17. Furthermore, when we ranked the assigned functions

by their MLE score, less than 10% of the top 25% of scores corresponded to

functions involving OU (OU: 1 out of 101, 1%; Lin+OU: 3 out of 101, 3%). In-

stead, linear and periodic combinations featured frequently (Lin: 54 out of 101,

53%; Lin+Cos: 25 out of 101, 25%; Cos: 18 out of 101, 18%). In contrast, for

the bottom 25% of likelihood scores, OU and functions involving OU were the

only functions assigned (OU: 43 out of 101, 43%; Cos+OU: 38 out of 101, 38%;

Lin+OU: 20 out of 101, 20%); see also Figures 7.14 and 7.15 for the lowest-

likelihood MLE extrapolations. For all extrapolations associated with a function

type, see Figures 7.16 and 7.17.

7.2.3 Choices

We again contrasted the proportion estimates of a Dirichlet-Multinomial model

against random choice (1/6) and the proportion selected in the control condi-
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Figure 7.14: The five extrapolations with the lowest MLE scores in the four linear

conditions.
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Figure 7.15: The five extrapolations with the lowest MLE scores in the four periodic

conditions.
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Figure 7.16: Extrapolations in the linear conditions assigned to the individual functions

via MLE.
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Figure 7.17: Extrapolations in the periodic conditions assigned to the individual func-

tions via MLE.
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tion6. For the linear transfer conditions, only in Lin+Cos→Lin+OU were pro-

portions credibly higher than chance. Participants selected linear above chance

in Lin+Cos→Lin+OU (16 out of 51, 31% and > 99% of the proportion estimates

were larger than chance, p̂Linear>1/6 > .99), but the estimated proportion was not

higher than the corresponding control proportion.

For periodic conditions, proportions for Cos were higher than chance in the

2×Cos+Lin condition (20 out of 50, 40%, p̂Cos>1/6 > .99), but not higher than

the corresponding control proportion (pcontrol = .38, p̂Cos>.38 = .46). Lin+Cos

was selected higher than chance in the Cos+Lin→Cos+OU condition (14 out of

50, 28%, p̂Lin+Cos>1/6 > .97). This proportion was higher than the corresponding

control proportion (pcontrol = .16, p̂Lin+Cos>.16 = .86). For estimated parameters

and a contrast to the control conditions, see Figures 7.16 and 7.17. For all

estimated proportions, see Figure 7.18, and Tables F.3 and F.4.

These results do not support our hypothesis. While for linear transfer sets pro-

portions were comparable to control for Lin+Cos→Lin+OU, repeated conditions

did not result in higher proportions of the intended compositional patterns. For

periodic transfer sets, none of the proportions larger than chance corresponded

to our hypothesis. For Cos+Lin→Cos+OU, participants selected Cos at lower

rates than control, whereas for repeated conditions, participants did not select

the intended composition at rates higher than chance.

Finally, we evaluated if the forced-choices corresponded to the function as-

signed to the extrapolations. If the assigned options corresponded to the choices

performed by the participants, that would suggest that our classification scheme

captured their inferred function. However, only in the linear control condition

(19 out of 50, 38%, p < .001) and 2×Cos+OU (14 out of 50, 28%, p < .05)

did choices correspond to the extrapolation classification. These results allow for

two interpretations. One possibility is that participants did not choose consistent

6We also calculated exact Binomial tests which were consistent with the Bayesian estimates.
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Figure 7.18: Proportion of options chosen in the three linear and periodic conditions

(round marks) and control (square marks). Linear and Linear+OU were selected at
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these preferences were only larger than the corresponding control proportions for

Lin+Cos.
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with their previous extrapolation, either due to inattention or fatigue, or because

none of the options were deemed similar to the intended function. Alternatively,

these results provide further evidence that the classification scheme adopted did

not faithfully capture participants’ extrapolations and did not correspond to their

choices. For per-choice accuracy scores, see Figure 7.19.
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Figure 7.19: Accuracy of the classification scheme in matching the participants’

choice. Only in the linear control condition did our method predict participants’

choices.



154 Chapter 7. Transferring Function Compositions

7.3 Discussion

We hypothesized that participants preferred the simpler functions in the non-

repeated conditions and extrapolated according to the structure of the training

data in the repeated conditions. However, our data do not support any of these

hypotheses. Thus, we did not find convincing evidence for compositional transfer

or our more specific hypothesis of training repetition and generalization.

While some extrapolation patterns visually resembled the training, our classi-

fication of the extrapolations could not verify this impression. Many participants

were better accounted for by OU-functions instead of the hypothesized functions.

Results in the linear training conditions were more promising than in the peri-

odic conditions, with control and Lin+Cos→Lin+OU conditions providing some

evidence for our hypothesis. However, for both repeated training-set conditions,

the majority of patterns were best described by OU or OU-compositions.

We hypothesize that this outcome is the result of the set of kernels we com-

pared and the parameter estimation method. First, we used the same GPs to gen-

erate the training data and subsequently classify our participants. This approach

was favored over adopting more complex and flexible GPs to better correspond

to our previous analysis (Chapter 5) and to provide a close correspondence be-

tween the presented material and the computational method. To better capture

the idiosyncratic human extrapolations, future work should instead adopt more

flexible kernels. Given the GPs we contrasted, the overly rigid GPs were severely

disfavored to account for these patterns compared to the OU GPs. Additionally,

while Chapter 6 suggested that OU kernels produced more salient patterns than

alternatives, the results in the linear control condition put into doubt whether

participants realized the structure in the OU samples or if they treated them as

noisy linear functions.

Second, our results raise a general concern – fitting idiosyncratic participant

extrapolations poses fundamental challenges for function learning research. Fu-
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ture research should attempt to improve on these results by adopting regularized

or fully Bayesian models. However, even with regularization, two fundamen-

tal issues complicate analysis: participants’ extrapolations often do not comply

with standard assumptions about residual noise, and the human kernel7 (Wilson

et al., 2015) is unlikely to be in the researcher’s set of candidate kernels. Given

these sources of model misspecification and low amounts of data, minor differ-

ences in likelihoods or posterior distributions cannot reliably be interpreted as a

meaningful inference of the human kernels or inferred functions. This problem

is exacerbated by the fact that, unlike rule-learning models or language mod-

els where compositionality is often adopted, many of the commonly postulated

human kernels can fit any pattern.

Thus, future research should attempt to better understand what human ker-

nels are, what noise assumptions characterize human extrapolations, and how

extrapolations relate to the inferred functions of the participants.

While our results did not provide much evidence for our hypothesis, we still

think that encouraging conclusions can be derived. First, visually many samples

exhibited the structures in the training set. These highly structured patterns are

a motivating indicator that, even with very little training, participants can infer

complex patterns. Our results, in combination with previous results by Schulz

et al. (2017) and the results in Chapter 6, suggest that abstract, compositional

learning mechanisms could provide the basis for flexible and far-ranging gener-

alization mechanisms. Uncovering these mechanisms would resolve fundamental

issues in function learning, and help resolve questions that have been outstanding

since the first function learning experiments (Carroll, 1963; Brehmer, 1974).

In the final chapter, I summarize the contributions of this thesis and return

to the question about how we can uncover human kernels and generalization

mechanisms, both computationally and experimentally.

7Or, for that matter, individual, highly idiosyncratic human kernels.





Chapter 8

Conclusion

I have argued through a series of experiments and computational models that hy-

pothesis spaces over abstract functions underpin human function generalization.

Furthermore, these spaces are continuously refined and adapted to the tasks at

hand. Before discussing the implications of these results and proposing future av-

enues for research, the next section will briefly summarize the main contributions

of the thesis.

8.1 Contributions

Inductive biases are flexible and adaptive The results across all chapters chal-

lenge the idea of an unspecific bias for linearity. In Chapter 3, we saw that

participants extrapolated according to quadratic or periodic relationships, even

when the data had to be remembered implicitly. In both Chapters 5 and 7, par-

ticipants often extrapolated in non-linear fashion, even if the transfer data was

linear. Thus, these results suggest that previously reported biases for linearity

are too strong. However, these results do not necessarily contradict previous re-

search. Instead, they suggest that given contextual information, such as previous

training tasks, and in less memory-taxing experimental setups, participants can

overcome default preferences.

157
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People track high-level features of functions Throughout this thesis, we have

seen that people represent high-level features of functions even when details of

these functions are not tracked precisely. These abstract features can amount

to the abstract type of function (Chapters 3 and 5), variance (Chapter 4), or

compositional structure (Chapters 6 and 7). These results contrast previous

accounts of function learning as parameter estimation. These one-size-fits-all

models propose that when faced with a function learning task, participants learn

the details of that function and not information about the its type. Instead, we

propose that tracking these high-level features provides reusable abstractions that

allow far-ranging transfer.

People can transfer abstract information about the function learned This

thesis provides first experimental evidence that people can use high-level features

about previous functions in subsequent tasks. People can transfer the information

learned in flexible ways, in Chapter 5 by applying the abstract function type,

or, in Chapters 6 and 7, by applying knowledge of how functions combine, to

new situations. These results expand our understanding of how people excel at

far-ranging extrapolations. Previous research has treated function learning as a

domain-general process. These models cannot account for the flexible transfer of

knowledge observed in our experiments. We suggest that domain-specific learning

allows more flexible learning and stronger generalizations.

People can perceive, recognize, and transfer additive compositional struc-

tures In Chapters 6 and 7, we saw that people can perceive, recognize, and

transfer compositional functional structure. While people were able to infer an

abstract rule from as few as one presentation, we also saw that they did so pre-

dominantly for additive compositions. These results, in combination with earlier

results by Schulz et al. (2017), suggest that people can perceive deep latent struc-

ture in patterns, form abstract compositional hypothesis spaces, and, in some
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cases, apply this knowledge in order to extrapolate. These results provide impor-

tant insights into the structure and origin of the hypothesis space of functions.

Previous approaches had to postulate an ever-expanding, but ultimately narrow,

set of candidate functions to account for the flexibility of human extrapolations.

Instead, our results highlight that a small set of broadly applicable functions,

combined with compositional principles, can produce very flexible and complex

hypotheses.

8.2 Open Questions and Implications

The results of this thesis raise several important questions and suggest future

experiments. First, experiments in this thesis always explicitly instructed partic-

ipants that the relationships belonged to the same underlying pattern. Thus, it is

critical to determine if our results generalize to more realistic setups, in which no

explicit instruction about the underlying function is given. Second, the analysis

in this thesis has highlighted the technical and experimental difficulties encoun-

tered when attempting to uncover human kernels and their parametrizations.

Third, while this thesis has expanded our understanding of learning at the level

of the hypothesis space, less is known about how and when individual subtypes

of functions, such as positive and negative linear functions, are learned. Finally,

these results highlight the importance of adopting a wide range of methods and

experimental paradigms to uncover the basis of human generalization. I will dis-

cuss these open questions and suggest possible experimental and methodological

approaches in the next paragraphs before briefly stating the implications of this

work for human generalization research.

Implicit learning of shared generative functions All our experiments explic-

itly instructed participants to treat patterns as “underlying the same structure”.

However, in the real world, this information is rarely directly available and, in-
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stead, people have to learn shared structure implicitly. Future research should

thus focus on how and when people infer these structural similarities. These

experiments will likely require considerably more training data and also have to

take into account how context-relevant features of the domain are introduced and

displayed experimentally.

Difficulties uncovering human inductive biases A second important issue re-

gards the efforts of reverse-engineering the inductive biases underlying human

generalizations. Previous work has focused either on parametric, rule-like forms

(Carroll, 1963; Brehmer, 1971), associative mechanisms (McDaniel and Buse-

meyer, 2005), or has approached the task from a computational level (Lucas

et al., 2015). Given these theoretical commitments, previous research has then

inferred parameters of these rules (Brehmer, 1974), or hybrid mechanisms (Buse-

meyer et al., 1997), or suggested human kernels (Wilson et al., 2015). From a

computational perspective, Gaussian processes seemed especially promising, as

they can encompass both the flexibility of associative learning and, via the mean

function, the parametric commitments of rule-learning (Lucas et al., 2015; Schulz

et al., 2017).

However, the results in this thesis suggest that in many cases, Gaussian pro-

cesses exhibited similar problems as previous rule-based or associative approaches.

First, introducing deterministic mean functions as a surrogate for participants’

far-ranging extrapolations introduces the same issues as previous rule-based ap-

proaches: the resulting extrapolations are mainly dictated by the parametric

function and are often too rigid. Second, the flexibility of the kernels might not

correspond to the way humans extrapolate. For instance, the variance of a linear

kernel does not express the firm commitments to intercepts and slopes that many

human extrapolations exhibit. These issues arise both when fitting models to par-

ticipant data, as well as when creating experimental materials. Third, the kernels
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discussed in this thesis, and in previous work, often cannot capture the human

patterns without considerable additional constraints or regularization. For exam-

ple, RBF or OU kernels capture smooth or rough patterns and can fit any data.

Thus, only in conjunction with parameter biases are these kernels informative for

human generalization.

In addition to the question about kernels and kernel parameters, the data

collected in this thesis highlights that, echoing the results in other areas of psy-

chological research (Gilden et al., 1995), standard noise assumptions do not nec-

essarily match the data. Participants might occasionally produce extrapolations

corresponding to the maxima of the target scale or may even invert their implied

functions (as seen in Chapter 3), resulting in complex residual distributions. Esti-

mating model parameters as characteristic of human inductive biases with models

that exhibit mismatched noise assumptions then risks being biased, as the kernel

hyperparameters have to capture these idiosyncrasies. Two possible approaches

to this problem – one experimental and one computational– seem promising.

First, instead of drawing or submitting individual points, participants could

submit several function extrapolations, thus producing average or aggregate per-

participant patterns. Also, experiments could include uncertainty estimates for

individual data points to better understand the range of values entailed by the

participants’ behaviors.

A second approach would focus on the computational process modeling the

behavior. First, more flexible heavy-tailed processes could be fitted instead of

Gaussian processes (for instance, Student’s-T processes). Heavy-tailed processes

would allow the model to disregard extreme outliers and produce a more robust

estimate of the participants’ regressions. However, these processes make compu-

tations costly, as they do not have the favorable analytical properties of GPs.

Furthermore, these processes would not allow a straightforward compositional

approach, as compositions of non-Gaussian processes do not necessarily produce
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valid stochastic processes.

Overall, these results highlight that to characterize human function extrap-

olations fully, we require human kernels, human kernel parameters, and human

noise distributions. Therefore, using GPs to capture human generalization is not

a worry-free computational approach, capable of characterizing all features of hu-

man extrapolations. Without a thorough grasp of kernel types, parameters, and

noise, we lose our ability to reliably interpret these models as characteristic fea-

tures of human inferences. Echoing the sentiment of MacKay (2003), one might

ask if by replacing previous rule or associative models with GPs, there is a risk

of “throwing out the baby with the bathwater”.

Learning function subtypes Previous research has highlighted the importance

of particular parametric forms in function extrapolation, such as the positive

matched linear function. However, it has also highlighted the inverse of this func-

tion, the negative linear, as highly salient. A critical theoretical question is how

these salient subtypes (in this case, linear functions) are learned and maintained.

For instance, how does a repeated presentation of a particular function affect the

extrapolation of alternative functions belonging to that function type?

One possibility is that these kernel types are learned analogous to nonpara-

metric models in machine learning. Repeated exposure to data amounts to the

introduction of new kinds of functions. New instances close enough to that type

will be associated with it, whereas situations that are different are assigned to

alternative functions. These questions could be informed by new experimental

tasks, such as expanding on the work in Chapter 4 by obtaining graded similarity

judgments between function realizations for functions of different types.

Similar models and experiments could be explored regarding compositional

learning: Are new compositions cached as entities for reuse, or do people have to

assemble them continually? One exciting prospect would approach this compu-
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tationally from a language learning perspective, for example, by applying ideas

from nonparametric grammar learning (Johnson et al., 2007).

Finally, to truly uncover how these hypothesis spaces are learned in the first

place, future research should focus on developmental experiments. Developmental

research has shown that many general inductive biases appear early in infancy

(for an overview, see Xu, 2019) and young children can exhibit different inductive

biases than adults (Lucas et al., 2014). Obtaining such experimental results would

be vital to uncovering human kernels and the origins and mechanisms of how new

functions can be learned and adapted.

Uncovering the basis of human generalization Previous research and the ex-

periments presented in this thesis have highlighted the importance of testing

human extrapolation patterns to reveal human inductive biases. However, this

work has also highlighted the difficulty of capturing these extrapolations, given

that human extrapolations are variable and complex. These results suggest two

valuable insights for future research.

First, future work should focus closely on individual-level data and develop

computational models capable of capturing the richness of human extrapolations.

Second, as suggested in Chapter 4, complementary experimental approaches

should be adopted to reveal human generalization. This includes the further de-

velopment of experiments, such as iterated learning (Kalish et al., 2007), memory-

effects (Schulz et al., 2017), or Markov chain Monte Carlo with people (Chapter

4). However, this should also include closer analysis of the psychological hypoth-

esis space, for instance, adopting experimental setups such as multidimensional

scaling, or categorization tasks for function patterns. These approaches would

also allow us to further test the results of this thesis, namely that abstract features

of functions are preferred representations.

One experimental test of our results regards the influence of training order
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on the inferred abstract functions. Our results in Chapter 3 suggest that peo-

ple are surprisingly good at detecting high-level features even when data is not

readily available, and less capable at remembering the exact details of the func-

tion. These results suggest that, similar to results in categorization (Mathy and

Feldman, 2009), manipulating the presentation order to facilitate or hinder infer-

ences about the type of underlying function, would result in a strong preference

for the suggested function. Previous work in function learning has only focused

on systematically-increasing sequences or random sequences (Byun, 1995) and

quadratic functions (Kwantes et al., 2012). Systematic presentations resulted in

lower training error (Byun, 1995), and manipulation of the implied steepness of

subsequent training points resulted in steeper linear extrapolations compared to

orders that emphasized shallowness (Kwantes et al., 2012).

Future research should elaborate on these results and examine if other features

apart from shallowness and steepness, such as sampling rate for periodic functions,

affect what kind of function is inferred.

Implications

Overall, the results presented in this thesis expand our understanding of how

humans generalize. When participants were instructed that patterns followed the

same underlying structure, they adapted their prior expectations and performed

far-ranging generalizations. These generalizations followed flexible, highly struc-

tured, and often compositional inductive biases.

The thesis also highlights that function learning entails abstract, systematic,

and compositional, as well as graded and flexible learning processes. Bridging

statistical and symbolic learning, function learning provides an ideal field of study

for the representational underpinnings of human learning, generalization, and

transfer.



Appendix A

Gaussian Processes

Throughout this thesis, we have encountered the task of fitting intricate regression

patterns. At the same time, we usually needed to express these functions in terms

of the abstract principles that underlie those patterns. Gaussian processes allow

us to express features of functions, such as smoothness, periodicity, or roughness,

without having to commit to a particular parametric form. At the same time,

GPs can include parametric mean functions that capture long-range extrapolation

trends. Finally, combining individual GPs, for example, by addition, results in

complex, compositional models.

This chapter gives a brief overview of GPs for regression tasks, focusing mainly

on how GPs allow us to express abstract functional features through the kernel

and its hyperparameters and compose GPs through addition and multiplication.

For a more thorough introduction to GPs, see Rasmussen and Williams (2006);

for an up-to-date tutorial on GPs as a modeling tool in cognitive science, see

Schulz et al. (2018).

A.1 What are Gaussian Processes?

A Gaussian process is a collection of random variables, of which any finite subset

has a joint Gaussian distribution (Rasmussen and Williams, 2006). A Gaussian
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process specifies a distribution over functions f(x) ∼ GP (µ,k), where µ(x) =

E[f(x)] and k is the covariance function k(x,x′) = cov(f(x),f(x′)).

The kernel defines how much values of x depend on the other values x′ and

specifies a similarity measure over x. Therefore the characteristics of a Gaussian

process model crucially rests on the choice of the kernel and its parametrization.

For a selection of kernel functions, see Figure A.1. For samples from GPs with

those kernel functions, see Figure A.2.
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(c) The radial basis function kernel.
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(d) The Ornstein-Uhlenbeck kernel

Figure A.1: The kernel as a function of distance x−x′.
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Many kernels have been used in statistics and machine learning, one of the

most widely used being the squared exponential basis kernel:

kRBF (x,x′) = exp(−0.5||x−x′||2).

Hyperparameters can be added, for example a length-scale parameter l resulting

in:

kRBF (x,x′) = exp(−0.5||x−x′||2/l2).

(a) Samples from a linear-kernel GP. (b) Samples from a cosine-kernel GP.

(c) Samples from an RBF-kernel GP. (d) Samples from an OU-kernel GP.

Figure A.2: Three samples from Gaussian processes with different kernels.
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A.2 Sampling from the Prior and Conditioning on

Data

We can sample from the GP at any collection of points X by evaluating the kernel

function K(X,X) and sampling f(X) from a multivariate Gaussian distribution

N (µ(X),K(X,X)). For samples from the priors of an RBF kernel with long and

short lengthscales, see Figures A.3a and A.3c.

More useful for practical applications is calculating the posterior distribution

of f given some observations. For GPs, this amounts to conditioning the joint

Gaussian prior distribution on the observations. Crucially, for fixed hyperparam-

eters, this conditional distribution can be obtained analytically. For posterior

means and posterior samples for the GPS with the RBF kernel with long and

short lengthscales, see Figures A.3b and A.3d. Given the commitment to a par-

ticular kernel or a composition of kernels, fitting a Gaussian process to data

amounts to learning the set of hyperparameters specified by the kernel. Vary-

ing those hyperparameters will result in very different extrapolations (see Figure

A.3d).

A.3 Composing Gaussian Processes

Kernels can be combined by multiplication or addition, resulting in more complex

kernel structures (Duvenaud et al., 2013). For example, adding a RBF kernel and

a linear kernel results in smoothly varying periodic patterns:

kLinear+P eriodic = kLinear(x,x′) + kP eriodic(x,x′)

For examples of the kernels obtained by addition and multiplication, see Figure

A.5), for samples from those kernels, see Figure A.4.

Expressing kernel functions as compositions allows for intuitive interpretation

of functional constituents. In this thesis, expressing the kernel as a composition
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µ

(a) Long-lengthscale prior samples.

µ̂

(b) Long-lengthscale posterior samples.

µ

(c) Short-lengthscale prior samples.

µ̂

(d) Short-lengthscale posterior samples.

Figure A.3: Prior and posterior mean and 2SD (gray area), as well as samples from

two RBF kernels.
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of simple elements allows us to propose hypothesis spaces in which compositional

elements can result combining simpler constituents.
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(f) Cos×RBF kernel

Figure A.4: Kernel functions obtained by addition (first row), or multiplication (second

row).
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(a) Linear+Cos (b) Linear+OU (c) Cos+OU

(d) Linear×Linear (e) Linear×Cos (f) Cos×RBF

Figure A.5: Three samples from Gaussian processes obtained by adding (first row) or

multiplying (second row).





Appendix B

Function Representation and

Generalization

Figure B.1: The first screen of the experimental block in the scatter plot conditions

introduced participants to the general task.
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Figure B.2: The first screen of the experimental block in the Bar condition.

Figure B.3: In the Bar condition, participants had to predict the vertical bar’s value

on the right, given the left horizontal bar’s extent.
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Figure B.4: In the scatter plot conditions, participants had to predict substance y on

the y-axis.

Figure B.5: During the training phase, participants received feedback. In the Bar

condition, the true value was presented as a red bar.
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Figure B.6: During the training phase, participants received feedback in the form of

a red dot displaying the true value.



Appendix C

A Distributional Space of Functions

Figure C.1: The first instruction screen of the experiment introduced the general task.

177
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Figure C.2: After the instruction screen, participants had to pass a comprehension

check.

Figure C.3: After the instruction screens, the learning phase was explained.
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Figure C.4: At the beginning of the learning phase, participants received additional

instruction.

Figure C.5: Then, participants had to predict the value for one value of each pattern

for 25 patterns.
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Figure C.6: After the learning phase, participants received further instructions for the

main experimental section.

Figure C.7: In the main part of the experiment, participants had to choose one of

the two patterns for 240 trials.



Appendix D

Transferring Functions and

Parametrizations

D.1 Experiment

Figure D.1: The main instruction screen introduced the participants to the task.
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Figure D.2: After the general introduction, participants were shown an example of

the experimental screen.

Figure D.3: Finally, participants were introduced to the experimental structure.
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Figure D.4: Then, participants had to learn the relationships in the patterns over two

training blocks.

Figure D.5: After training, the transfer task was introduced. Here, we display the

transfer instructions for the forced-choice experiment.
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Figure D.6: In the forced-choice transfer block, participants had to select the most

likely pattern from six candidates. In the extrapolation condition, participants per-

formed an extrapolation task that followed the same design as the training blocks.
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D.2 Error Models

We specified all models in PyMC3, (Salvatier et al., 2016) and obtained poste-

rior distributions via three chains of NUTS Hamiltonian Monte Carlo sampling

(Hoffman and Gelman, 2014). We chose sufficiently large tuning runs to obtain

satisfactory convergence diagnostics (all R̂ < 1.1, ESS > 1000).

D.2.1 Log-normal Error Models

In addition to convergence diagnostics we were also interested in obtaining pos-

terior predictive draws, i.e. predictions of the model after training. These draws

provide us with a visual way of model criticism. Figure D.7 shows that our model

captured the error distribution fairly well. Note that while the empirical error

0.00 0.25 0.50
Error

Error PP
Error
µ Error PP

(a)

0.0 0.5 1.0
Error

0.0

0.5

1.0

(b)

Figure D.7: Mean posterior predictive density (a) and cumulative density (b), (µ Error

PP, dashed orange line) and 25 draws from the posterior (Error PP, solid orange line)

for the log-normal hierarchical model. Our model captures the general shape of the

empirical observations well (Error, black line).

distribution is upper-bound by 1, our model is not.

A further test of our model’s ability to capture the empirically observed errors

is to compare posterior predictive draws against per-participant error plots. Fig-

ure D.8 shows that participants differed considerably in their training error, with
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some participants exhibiting non-decreasing error. Our model captured group-

and individual errors reasonably well.
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Figure D.8: Per-participant training errors (coloured markers and lines) and corre-

sponding, per-participant mean of the posterior predictive distribution (white markers

and coloured lines).

D.2.2 Exponential Decay Model

We fitted a hierarchical Bayesian exponential-decay model on the learning rates,

with individual per-participant intercepts and slopes. Our model corresponds

to the model in Kalish (2013) and expresses individual participants’ errors as

an exponential, strictly decreasing function of block. The hierarchical struc-
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ture allowed us to capture both group-level variation and individual variation in

terms of initial difficulty (intercept, k) and error decay (slope, d) as: error ∼

N (µ,σ), where µ = ked×block. Participants’ s intercepts and slopes were pooled

within their corresponding experimental condition c, with, ksc ∼ Γ(αki,βk)) and

dsc ∼ Γ(αdi,βd)). Diverting from Kalish (2013) we use less dispersed hyperpriors,

α,β,σ ∼ Γ(0.01,0.01).

We obtain group-level intercepts, xkc = akc
bk

and learning rates xdc = adc
bd

.

Group-level intercepts for both linear conditions, as well as the low-variance OU

and the slow periodic were generally low, and error decayed across blocks, at a

rate of ≈ 0.2.
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Figure D.9: Group-level estimates of error intercepts and slopes estimated via the

hierarchical exponential-decay model. Both high-variance OU and the fast periodic

condition exhibit large initial errors in contrast to the remaining conditions. While

the error for the fast periodic condition decreases over blocks, the high-variance OU

error remains high.

However, our posterior estimates for slopes exhibit relatively large uncertainty.

This uncertainty stems directly from the model specification. Given that the
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error is µ = ked×block, for values of k close to 0, d has only negligible influence

on the overall error. In contrast, for high-variance OU, initial errors were high

and did not change over training. Similar to high-variance OU, initial errors for

fast periodic functions were high. However, these errors decreased significantly

over training blocks, at a rate of ≈ 0.3. For group-level intercepts and slopes

estimated by our model, see Figure D.9, for estimated parameters and highest

posterior density intervals, see Table D.1.

Table D.1: Group-level estimated means M̂ for intercepts, β0 and slopes, β0, as well

as 95% highest-posterior density intervals estimated via MCMC for the exponential

decay model.

M̂β0 HPD95β0 M̂β1 HPD95β1

Lin1 0.02 [0.02, 0.03] 0.23 [0.03, 0.48]

Lin2 0.02 [0.02, 0.03] 0.21 [0.03, 0.41]

OU1 0.03 [0.03, 0.04] 0.19 [0.01, 0.35]

OU2 0.09 [0.08, 0.09] 0.02 [0.00, 0.04]

Cos1 0.04 [0.03, 0.05] 0.27 [0.11, 0.43]

Cos2 0.1 [0.09, 0.11] 0.26 [0.18, 0.34]

Close examination of the posterior predictive distributions, both for error,

D.10 and individual, per-participant error, D.11 revealed that our estimates did

sometimes not capture the data well, as some participants were not best described

by monotonically decreasing functions. Finally, the normality assumption of the

dependent variable resulted in our model underestimating the strong concentra-

tion of the empirical data.
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Figure D.10: Mean posterior predictive density (a) and cumulative density (b, µ Er-

ror PP, dashed orange line) and 25 draws from the posterior (Error PP, solid orange

line) for the exponential-decay hierarchical model. The model captures the empiri-

cal observations fairly well (Error, black line), but the overall shape is less strongly

concentrated.

D.2.3 Model Comparisons

We have seen that the posterior predictive for the log-normal was better aligned

with the empirical data than the exponential-decay model. To further quantita-

tively evaluate the models’ predictive accuracy, we evaluated the out-of-sample

log-likelihood for draws from the posterior predictive (Vehtari et al., 2017). We

contrasted them via the widely applicable information criterion, WAIC Watanabe

(2010).

In addition to the log-normal (LogPP) and the exponential decay model

(Exponential), we also compared a log-normal model that did not have per-

participant intercepts and slopes log(error) ∼ β0+β1×block, (Log) and a linear

model error ∼ β0+β1×block (Linear). We found that the per-participant inter-

cept and slope log-normal model fitted our data best, see Table D.2.
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Figure D.11: Per-participant training errors (coloured markers and lines) and corre-

sponding, per-participant mean of the posterior predictive distribution for the hierar-

chical exponential model (white markers and coloured lines).
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Rank WAIC pWAIC dWAIC

LogPP 0 3222.61 450.03 0

Log 1 3122.29 13.91 100.32

Exponential 2 2620.82 333.14 601.78

Linear 3 2323.13 20.18 899.48

Table D.2: The four models compared and their rank. WAIC values correspond to

posterior-predictive fits, where higher values reflect better fits, pWAIC are estimated

number of parameters, and dWAIC is the relative difference for WAIC scores and the

best-fitting (rank 0) model.

D.3 Choice Model

To estimate the proportions for each option, we modeled per-condition Dirichlet-

Multinomial models. Each distribution of proportions was modeled as choice ∼

Mult(n,θ), where θ ∼ Dirichlet(a) and a = 1. For the estimated mean propor-

tions and HPDs, see Table D.3 and D.4.
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Table D.3: Per-condition proportion estimates (mean M̂ and 95% HPD intervals)

obtained via the Dirichlet-Multinomial model for the 3-point experiment.

Lin1 Lin2 OU1 OU2 Cos1 Cos2

M̂Lin1 0.55 0.05 0.14 0.09 0.09 0.09

HPDLin1 [0.36, 0.74] [0, 0.13] [0.02, 0.28] [0, 0.21] [0, 0.21] [0, 0.21]

M̂Lin2 0.18 0.55 0.09 0.09 0.05 0.04

HPDLin2 [0.05, 0.33] [0.36, 0.75] [0, 0.21] [0.01, 0.22] [0, 0.14] [0, 0.13]

M̂OU1 0.05 0.1 0.34 0.33 0.1 0.1

HPDOU1 [0, 0.14] [0, 0.22] [0.14, 0.53] [0.13, 0.52] [0, 0.23] [0.01, 0.21]

M̂OU2 0.09 0.09 0.09 0.36 0.14 0.23

HPDOU2 [0, 0.2] [0, 0.21] [0, 0.22] [0.18, 0.54] [0.02, 0.28] [0.06, 0.38]

M̂Cos1 0.09 0.05 0.14 0.05 0.53 0.14

HPDCos1 [0, 0.21] [0, 0.13] [0, 0.28] [0, 0.13] [0.32, 0.72] [0.02, 0.3]

M̂Cos2 0.14 0.1 0.05 0.1 0.19 0.43

HPDCos2 [0.02, 0.3] [0, 0.21] [0, 0.13] [0, 0.22] [0.05, 0.36] [0.24, 0.64]
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Table D.4: Per-condition proportion estimates (mean M̂ and 95% HPD intervals)

obtained via the Dirichlet-Multinomial model for the 1-point experiment.

Lin1 Lin2 OU1 OU2 Cos1 Cos2

M̂Lin1 0.55 0.05 0.14 0.09 0.09 0.09

HPDLin1 [0.36, 0.74] [0, 0.13] [0.02, 0.28] [0, 0.21] [0, 0.21] [0, 0.21]

M̂Lin2 0.18 0.55 0.09 0.09 0.05 0.04

HPDLin2 [0.05, 0.33] [0.36, 0.75] [0, 0.21] [0.01, 0.22] [0, 0.14] [0, 0.13]

M̂OU1 0.05 0.1 0.34 0.33 0.1 0.1

HPDOU1 [0,14] [0, 0.22] [0.14, 0.53] [0.13, 0.52] [0, 0.23] [0.01, 0.21]

M̂OU2 0.09 0.09 0.09 0.36 0.14 0.23

HPDOU2 [0, 0.2] [0, 0.21] [0, 0.22] [0.18, 0.54] [0.02, 0.28] [0.06, 0.38]

M̂Cos1 0.09 0.05 0.14 0.05 0.53 0.14

HPDCos1 [0, 0.21] [0, 0.13] [0.01, 0.28] [0, 0.13] [0.32, 0.72] [0.02, 0.3]

M̂Cos2 0.14 0.1 0.05 0.1 0.19 0.43

HPDCos2 [0.02, 0.3] [0, 0.21] [0, 0.13] [0, 0.22] [0.05, 0.36] [0.24, 0.64]
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Generalizing Function Compositions

Figure E.1: The main instruction screen introduced the task.

195



196 Appendix E. Generalizing Function Compositions

Figure E.2: In the example trial, participants received additional information on the

task.

Figure E.3: As in the main task, participants had to select the offspring from four

alternatives in the example trial.
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Figure E.4: The main task included a set of guidelines that participants could hide

to allow for more space on the screen.

Figure E.5: As in the example trial, participants first received the example rule.

Figure E.6: Once they revealed the example rule, the parent plants of the test item

were revealed.
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Figure E.7: Then, the four candidate patterns were shown, and the participant had

to select the most likely offspring.



Appendix F

Transferring Function Compositions

F.1 Experiment

Figure F.1: The main instruction screen.
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Figure F.2: After the general introduction, participants were shown an example of

the experimental screen.

Figure F.3: Then, they were introduced to the experimental structure.

Figure F.4: The instructions also introduced the final, forced-choice task.
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Figure F.5: In the two training blocks, participants had to predict the y values and

received feedback.

Figure F.6: Before the transfer block, participants received additional instructions.
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Figure F.7: In the transfer block, participants had to extrapolate the pattern given

three points.

Figure F.8: After the transfer block, participants received instructions for the final

forced-choice task.
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Figure F.9: In the final block participants had to choose the most likely pattern for

the transfer block.
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F.2 Error Models

All models and analyses in this chapter were specified and fitted the same way

as in Chapter 5 and Appendix D.

We compared the same models as in Chapter 5. For posterior predictive distri-

butions for the log-normal model, see Figure F.10. For per-participant posterior

predictive plots for the log-normal, see Figure F.10.
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Figure F.10: Mean posterior predictive density (a) and cumulative density (b), (µ

Error PP, dashed orange line) and 25 draws from the posterior (Error PP, solid orange

line) for the log-normal hierarchical model for the composition experiment.

For group-level error estimates for the exponential model, see Figure F.12, and

Table F.1. Per-participant posterior predictive plots for the exponential model

are presented in Figure F.13.

F.2.1 Model Comparisons

As in the previous chapter, we compared the models via out-of-sample log-

likelihoods and contrasted them via the WAIC. For a comparison of models,

see Table F.2.
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Figure F.11: Per-participant training errors (coloured markers and lines) and corre-

sponding, per-participant mean of the posterior predictive distribution for the hierar-

chical exponential model (white markers and coloured lines).
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Figure F.12: Group-level estimates of error intercepts and slopes estimated via the

hierarchical exponential-decay model.
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Figure F.13: Mean posterior predictive density (a) and cumulative density (b), (µ

Error PP, dashed orange line) and 25 draws from the posterior (Error PP, solid orange

line) for the exponential hierarchical model for the composition experiment.
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M̂ SD HPD3% HPD97%

xkLin1 0.02 0.00 0.02 0.03

xkLin2 0.02 0.00 0.02 0.03

xkOU1 0.04 0.00 0.03 0.04

xkOU2 0.09 0.00 0.08 0.09

xkCos1 0.04 0.00 0.03 0.05

xkCos2 0.10 0.01 0.09 0.11

xdLin1 0.23 0.13 0.03 0.46

xdLin2 0.21 0.11 0.03 0.40

xdOU1 0.19 0.10 0.01 0.35

xdOU2 0.02 0.01 0.00 0.04

xdCos1 0.27 0.08 0.11 0.42

xdCos2 0.26 0.04 0.18 0.33

Table F.1: Group-level estimated means M̂ for intercepts, β0 and slopes, β1, as well

as 95% highest-posterior densitz intervals estimated via MCMC for the exponential

decay model.

Rank WAIC pWAIC dWAIC

LogNPP 0 1879.89 2346.33 0

Exponential 1 1045.21 163.08 834.68

Log 2 1024.86 10.49 855.03

Linear 3 971.50 13.48 908.39

Table F.2: The four models compared, their rank and WAIC score (higher values

reflect better fits). pWAIC are estimated number of parameters, and dWAIC is the

relative difference for WAIC scores and the best-fitting (rank 0) model.
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F.3 Choice Model

As in Appendix D.3, we estimated the proportions for each option via a Dirichlet-

Multinomial model. For the estimated mean proportions and HPDs, see Table

F.3 and F.4.
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M̂ SD HPD2.5% HPD97.5% Option Condition

0.04 0.02 0.00 0.08 Cos 2×Lin+Cos

0.07 0.03 0.02 0.14 Cos 2×Lin+Cos

0.14 0.04 0.06 0.23 Lin+Cos 2×Lin+Cos

0.12 0.04 0.04 0.21 Lin+Cos 2×Lin+Cos

0.14 0.05 0.06 0.24 OU+Cos 2×Lin+Cos

0.14 0.04 0.06 0.23 OU+Cos 2×Lin+Cos

0.22 0.06 0.11 0.33 Lin 2×Lin+OU

0.30 0.06 0.18 0.42 Lin 2×Lin+OU

0.25 0.06 0.14 0.36 Lin+OU 2×Lin+OU

0.21 0.05 0.11 0.31 Lin+OU 2×Lin+OU

0.05 0.03 0.01 0.11 OU 2×Lin+OU

0.14 0.05 0.06 0.23 OU 2×Lin+OU

0.14 0.05 0.07 0.24 Cos Lin+Cos,Lin+OU

0.12 0.04 0.05 0.21 Cos Lin+Cos,Lin+OU

0.04 0.02 0.00 0.08 Lin+Cos Lin+Cos,Lin+OU

0.16 0.05 0.06 0.26 Lin+Cos Lin+Cos,Lin+OU

0.14 0.05 0.06 0.23 OU+Cos Lin+Cos,Lin+OU

0.16 0.05 0.07 0.25 OU+Cos Lin+Cos,Lin+OU

0.45 0.06 0.32 0.56 Lin Lin Control

0.25 0.06 0.15 0.36 Lin Lin Control

0.29 0.06 0.18 0.40 Lin+OU Lin Control

0.25 0.06 0.14 0.35 Lin+OU Lin Control

0.11 0.04 0.04 0.18 OU Lin Control

0.09 0.04 0.02 0.16 OU Lin Control

Table F.3: Proportion estimates (mean M̂ and 95% HPD intervals obtained via the

Dirichlet-Multinomial model for linear transfer set conditions and control condition.
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M̂ SD HPD2.5% HPD97.5% Option Condition

0.38 0.06 0.25 0.50 Cos 2×Cos+Lin

0.11 0.04 0.03 0.19 Lin 2×Cos+Lin

0.11 0.04 0.04 0.19 Lin+Cos 2×Cos+Lin

0.16 0.05 0.07 0.26 Lin+OU 2×Cos+Lin

0.09 0.04 0.03 0.16 OU 2×Cos+Lin

0.16 0.05 0.07 0.26 OU+Cos 2×Cos+Lin

0.20 0.05 0.09 0.30 Cos 2×Cos+OU

0.07 0.04 0.01 0.14 Lin 2×Cos+OU

0.21 0.05 0.12 0.32 Lin+Cos 2×Cos+OU

0.12 0.04 0.05 0.21 Lin+OU 2×Cos+OU

0.18 0.05 0.08 0.29 OU 2×Cos+OU

0.22 0.06 0.11 0.32 OU+Cos 2×Cos+OU

0.21 0.05 0.11 0.32 Cos Cos+Lin,Cos+OU

0.07 0.03 0.01 0.13 Lin Cos+Lin,Cos+OU

0.27 0.06 0.16 0.38 Lin+Cos Cos+Lin,Cos+OU

0.12 0.04 0.05 0.21 Lin+OU Cos+Lin,Cos+OU

0.11 0.04 0.04 0.19 OU Cos+Lin,Cos+OU

0.22 0.05 0.11 0.31 OU+Cos Cos+Lin,Cos+OU

0.36 0.06 0.24 0.48 Cos Cos Control

0.16 0.05 0.08 0.25 Lin Cos Control

0.16 0.05 0.06 0.26 Lin+Cos Cos Control

0.11 0.04 0.03 0.18 Lin+OU Cos Control

0.09 0.04 0.02 0.16 OU Cos Control

0.12 0.04 0.05 0.20 OU+Cos Cos Control

Table F.4: Proportion estimates (mean M̂ and 95% HPD intervals obtained via the

Dirichlet-Multinomial model for cosine transfer set conditions and control condition.
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